DOI QR코드

DOI QR Code

High Pressure Behavior Study of Azurite

고압 하에서 남동석의 거동에 대한 연구

  • Kim, Young-Ho (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jinwon (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jaeyoung (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
  • 김영호 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최진원 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최재영 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2018.11.20
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

Azurite ($Cu_3(CO_3)_2(OH)_2$) was compressed up to 21.52 GPa for its behaviors at ambient temperature. High pressure experiment was performed using the symmetrical diamond anvil cell employed in the angle dispersive X-ray diffraction method. Pressure was determined by ruby fluorescence calibration method. No phase transitions were observed within the present pressure limit and bulk modulus was determined to be 54.4 GPa when ${K_0}^{\prime}$ is fixed to be 4. Applying the normalized pressure-strain analysis, reliability of the azurite compression pattern was checked.

상온에서 남동석($Cu_3(CO_3)_2(OH)_2$)에 대한 고압 거동 연구를 하였다. 대칭형 다이아몬드 앤빌기기를 이용하여 21.52 GPa까지 압력을 증가시키면서 각분산 X-선 회절법과 방사광을 이용하여 고압회절 데이터를 얻었으며, 시료에 가해준 압력은 루비 형광파의 파장 변화를 측정하여 결정하였다. 본 실험에서 시행한 압력의 범위 내에서 상변이는 관찰되지 않았으며, 정압상태에서 체적탄성률($K_0$)은 ${K_0}^{\prime}$이 4일 때, 54.4 GPa로 계산되었다. 상온상태에서 얻은 남동석의 체적탄성률에 대한 신뢰도를 정규화압력 및 정규화응력변형 분석을 통해 검증하였다.

Keywords

References

  1. Angel, R.J. (2000) Equation of state, Rev. Mineral. Geochem., 41, 35-59. https://doi.org/10.2138/rmg.2000.41.2
  2. Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations, Zeischrift fur Kristallographie, 229, 405-419.
  3. Brenker, F.E., Vollmer, C., Vincze, L. Vekemans, B., Szymanski, A., janssens, K., Szaloki, I., Nasdala, L., Joswig, W., and Kaminsky, F. (2007) Carbonates from the lower part of transition zone or even the lower mantle, Earth Planet. Sci. Lett. 260, 1-9. https://doi.org/10.1016/j.epsl.2007.02.038
  4. Dasgupta, R., Chi, H., Shimizu, N., Buono, A.S., and Walker, D. (2013) Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochim. cosmochim. Acta, 102, 191-212. https://doi.org/10.1016/j.gca.2012.10.011
  5. Faust, J. and Knittle, E. (1993) The equation of state, amorphization and high-pressure phase diagram of muscovite, J. Geophys. Res., 99(B10), 19785-19792. https://doi.org/10.1029/94JB01185
  6. Fiquet, G. and Reynard, B. (1999) High-pressure equation of state of magnesite: new data and a reappraisal. Am. Mineral., 84, 856-860. https://doi.org/10.2138/am-1999-5-619
  7. Gao, J., Zhu, F., Lai, X.J., Haung, R., Qin, S., Chen, D.L., Liu, J., Zheing, L.R., and Wu, X. (2014) Compressibility of a natural smithonite $ZnCO_3$ up to 50 GPa, High Press. Res., 34, 89-99. https://doi.org/10.1080/08957959.2013.868454
  8. Hazen, R.M. and Finger, L.W. (1978) The crystal structures and compressibilities of layer minerals at high pressures. II. Phlogopite and Chlorite, Am. Mineral., 63, 293-296.
  9. Holl, C., Smyth, J., Laustsen, H., Jacobsen, S., and Downs, R. (2000) Compression of whitherite to 8 GPa and the crystal structure of $BaCO_3$ II, Phys. Chem. Miner., 27, 467-473. https://doi.org/10.1007/s002690000087
  10. Hwang, H., Seoung, D., Lee, Y., Liu, Z., Liermann, H.P., Cynn, H., Vogt, T., Kao, C.C., and Mao, H.K. (2017) A role for subducted super-hydrated kaolinite in Earth's deep water cycle. Nature Geoscience, 10(12), 947-953. https://doi.org/10.1038/s41561-017-0008-1
  11. Jeanloz, R. (1981) Finite-strain equation of state for high-pressure phases, Geophys. Res. Lett., 8(12), 1219-1922. https://doi.org/10.1029/GL008i012p01219
  12. Jeanloz, R. and Hazen, R.M. (1991) Finite-strain analysis of relative compressibilities: Application to the high-pressure wadsleyite phase as an illustration. Am. Mineral., 76, 1765-1768.
  13. Keppler, H., Wiedenbeck, M., and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle, Nature 424, 414-416. https://doi.org/10.1038/nature01828
  14. Kim, Y.H. and Yi, Z. (1999) High pressure X-ray diffraction studies on a natural talc, J. Miner. Soc. Korea, 12(1), 1-10 (in Korean with English abstract).
  15. Kim, Y.H. and Kim, S.O. (2014) A compression study on a synthetic talc, J. Miner. Soc. Korea, 27(4), 283-291 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.4.283
  16. Kim, Y.H., Choi, J., Heo, S., Jeong, N., and Hwang, G.C. (2015) High pressure behavior study of the apophyllite(KF), J. Miner. Soc. Korea, 28(4), 325-332 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.4.325
  17. Kim, Y.H., Kim, S.J., and Choi, J.Y. (2017) A high pressure behavior study of $TiO_2$-complex, J. Miner. Soc. Korea, 30(3), 127-136 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2017.30.3.127
  18. Klein, C. and Hurlbut, Jr. C.S. (1985) Manual of mineralogy(20th ed.), John Wiley & Sons, p. 596.
  19. Liu, L.G. (1986) Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere, Phys. Earth & Planet. Int., 42, 255-262. https://doi.org/10.1016/0031-9201(86)90028-2
  20. Logvinova, A.M., Wirth, R., Fedorova, E.N., and Sobolev, N.V. (2008) Nanometer-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation, Eur. J. Miner., 20, 317-331. https://doi.org/10.1127/0935-1221/2008/0020-1815
  21. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  22. Martinez, I., Zhang, J., and Reeder, R.J. (1996) In-site X-ray diffraction of aragonite and dolomite at high pressure and high temperature; evidence for dolomite breakdown to aragonite and magnesite, Am. Mineral., 81, 611-624. https://doi.org/10.2138/am-1996-5-608
  23. Merlini, M. Perchiazzi, N., Hanfland, M., and Bossak, A. (2012) Phase transition at high pressure in $Cu_2CO_3(OH)_2$ related to the reduction of the Jahn-Teller effect, Acta Cryst. A, 68, 266-274.
  24. Ming, L.C., Jayaraman, A., Shieh, S.R., and Kim, Y.H. (1995) In situ high-pressure x-ray diffraction study of $TlReO_4$ to 14.5 GPa: Pressure-induced phase transformation and the equation of state, Phys. Rev. B, 51(18), 12100-12106. https://doi.org/10.1103/PhysRevB.51.12100
  25. Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., and Vincze, L. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, 507, 221-224. https://doi.org/10.1038/nature13080
  26. Redfern, S.A. (2000) Structural variations in carbonates. Rev. Mineral. Geochem., 41, 289-308. https://doi.org/10.2138/rmg.2000.41.10
  27. Redfern, S.A. and Angel, R.J. (1999) High-pressure behaviour and equation of state of calcite, $CaCO_3$, Contrib. Miner. & Petrol., 134, 102-106. https://doi.org/10.1007/s004100050471
  28. Ross, N.L. (1997) The equation of state and high-pressure behaviour of magnesite, Am. Mineral., 82, 682-688. https://doi.org/10.2138/am-1997-7-805
  29. Ross, N.L. and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite, Am. Mineral., 77, 412-421.
  30. Rule, K.C., Reehuis, M., Gibson, M.C.R., Ouladdiaf, B., Gutmann, M.J., Hoffmann, J.-U., Gerischer, S., Tennant, D.A., Sullow, S., and Lang, M. (2011) The magnetic and crystal structure of azurite $Cu_3(CO_3)_2(OH)_2$ as determined by neutron diffraction. Phys. Rev. B83, 104401-409.
  31. Seto, Y. Hamane, D., Nagai, T., and Fujino, K. (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation, Phys. Chem. Miner., 35, 223-229. https://doi.org/10.1007/s00269-008-0215-9
  32. Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K. (2018) Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle. Science, 359, 1136-1139. https://doi.org/10.1126/science.aao3030
  33. Vink, B.W. (1986) Stability relations of malachite and azurite. Mineral. Mag., 50, 41-47. https://doi.org/10.1180/minmag.1986.050.355.06
  34. Will, G., Hoffbauer, W., Hinze, E., and Lauerjung, J. (1986) The compressibility of forsterite up to 300 kbar measured with synchrotron radiation, Physica, 139 & 140B, 193-197.
  35. William, Q., Knittle, E., Reichlin, R., Martin, S., and Jeanloz, R. (1990) Structural and electronic properties oof $Fe_2SiO_4$-fayalite at ultrahigh pressure: amorphization and gap closure. J. Geophys. Res., 95, 21549-21563. https://doi.org/10.1029/JB095iB13p21549
  36. Xu, J., Kuang, Y., Zhang, B., Liu, Y., Fan, D., Zhou, W., and Xie, H. (2015) High-pressure study of azurite $Cu_3(CO_3)_2(OH)_2$ by synchrotron radiation X-ray diffraction and Raman spectroscopy, Phys. Chem. Minerals, doi: 10.1007/s00269-015-0764-7.