DOI QR코드

DOI QR Code

Compressibility Study of Pyromorphite at High Pressure

고압 하에서 녹연석의 압축성에 대한 연구

  • Kim, Young-Ho (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Lee, Nuri (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
  • 김영호 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이누리 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2016.12.07
  • Accepted : 2016.12.28
  • Published : 2016.12.30

Abstract

Pyromorphite($Pb_{4.85}(P_{1.02}O_4)_3Cl_{1.04}$) which belongs to the apatite group was compressed up to 33.4 GPa for its equation of state at ambient temperature. High pressure experiment was performed with symmetrical diamond anvil cell employing the angle dispersive X-ray diffraction method. Pressure was determined by ruby fluorescence calibration method. No phase transition were observed and bulk modulus was determined to be 80(7) GPa when $K{_0}^{\prime}=13(2)$. Employing the normalized pressure-normalized strain analysis, reliability check of the compressible behavior was conducted.

인회석 광물 군에 속하는 녹연석($Pb_{4.85}(P_{1.02}O_4)_3Cl_{1.04}$)에 대한 상온-고압 상태방정식 연구를 시행하였다. 대칭형 다이아몬드 앤빌기기를 이용하여 33.4 GPa까지 압력을 증가시키면서 각분산 X-선 회절법과 방사광을 이용하여 회절 데이터를 검출하였으며, 시료에 가해준 압력은 루비 형광파의 파장변화를 측정하여 결정하였다. 본 고압실험에서 시행한 압력의 범위 내에서 상변이는 관찰되지 않았으며, 정압상태에서 체적탄성률($K_0$)은 $K{_0}^{\prime}=13(2)$일 때 80(7) GPa로 계산되었다. 본 연구에서 결정된 상온상태에서 녹연석의 체적탄성률 신뢰도를 정규화압력 및 정규화응력변형 분석을 하여 평가하였다.

Keywords

References

  1. Angel, R.J., Gonzalez-Platas, J., and Alvaro, M. (2014) EosFit7c and a Fortran module (library) for equation of state calculations, Zeischrift fur Kristallographie, 229, 405-419.
  2. Beevers, C.A. and McIntyre, D.B. (1946) The atomic structure of fluorapatite and its relation to that of tooth and bone material, Mineral. Mag., 27, 254-257 https://doi.org/10.1180/minmag.1946.027.194.05
  3. Bell, P.M., Xu, J., and Mao, H.K. (1986) Static compression of gold and copper and calibration of the ruby pressure scale to 1.8 Megabars, in Shock Waves in Condensed Matter, Gupta, Y.M. (eds), Plenum Pub. Co., New York, 125-130.
  4. Chijioke, A.D., Nellis, W.J., Soldatov, A., and Silvera, I.F. (2005) The ruby pressure standard to 150GPa, Journal of Applied Physics, 98, 1149051-1149059.
  5. Gatta, G.D., Lee, Y., and Kao, C.C. (2009) Elastic behavior of vanadinite, $Pb_{10}(VO_4)_6Cl_2$, a microporous non-zeolitic mineral, Physics and Chemistry of Minerals, 36, 311-317. https://doi.org/10.1007/s00269-008-0279-6
  6. Hwang, G.C. and Kim, Y.H. (2013) High pressure X-ray diffraction study of $LiFePO_4$/C-olivine-like phase, Journal of Mineralogical Society of Korea, 26(1), 35-44 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.1.35
  7. Jeanloz, R. (1981) Finite-strain equation of state for high-pressure phases, Geophysical Research Letters, 8(12), 1219-1222. https://doi.org/10.1029/GL008i012p01219
  8. Jeanloz, R. and Hazen, R.M. (1991) Finite-strain analysis of relative compressibilities: Application to the high-pressure wadsleyite phase as an illustration, American Mineralogist, 76, 1765-1768.
  9. Kim, Y.H., Hwang, G.C., and Kim, S.O. (2009) Compression study on a synthetic geothite, Journal of Mineralogical Society of Korea, 22(4), 325-330 (in Korean with English abstract).
  10. Kim, Y.H., Choi, J., Heo, S., Jeong, N., and Hwang, G.C. (2015) High pressure behavior study of the apophyllite(KF), Journal of Mineralogical Society of Korea, 28(4), 325-332 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2015.28.4.325
  11. Klein, C. and Hurlbut, Jr. C.S. (1985) Manual of mineralogy(20th ed.), John Wiley & Sons, p596.
  12. Liu, L.G. and Bassett, W.A. (1986) Elements, Oxides and Silicates, High-pressure phases with implications for the Earth's interior, Oxford University Press, New York, p250.
  13. Ma, Q.Y., Traina, S.J., Logan, T.J., and Ryan, J.A. (1993) in situ lead immobilization by apatite. Environ. Sci. Technol., 27, 1803-1810. https://doi.org/10.1021/es00046a007
  14. Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure guage to 800kbar under quasi-hydristatic conditions. Journal of Geophysical Research, 91, 4673-4676. https://doi.org/10.1029/JB091iB05p04673
  15. Markl, G., Marks, M.A.W., Holzapfel, J., and Wenzel, T. (2014) Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwarzwald mining district, SW Germany, American Mineralogist, 99, 1133-1146. https://doi.org/10.2138/am.2014.4789
  16. Ming, L.C., Jayaraman, A., Shieh, S.R., and Kim, Y.H. (1995) In situ high-pressure x-ray diffraction study of $TlReO_4$ to 14.5 GPa: Pressure-induced phase transformations and the equation of state, Physical Review B, 51(18), 12100-12106. https://doi.org/10.1103/PhysRevB.51.12100
  17. Pan, Y.M. and Fleet, M.E. (2002) Composition of the apatite-group minerals: substitution mechanisms and controlling factors, Rev. Mineal. Geochem., 48, 13-49. https://doi.org/10.2138/rmg.2002.48.2
  18. Ruby, M.V., Davis, A., and Nicholson, A. (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ. Sci. Technol., 28, 646-654. https://doi.org/10.1021/es00053a018
  19. Wei, S., Ma, M., Fan, D., Yang, J., Zhou, W., Li, B., Chen, Z., and Xie, H. (2013) Compressibility of mimetite and pyromorphite at high pressure, International Journal of high Pressure Research, 33(1), 27-34. https://doi.org/10.1080/08957959.2013.765003

Cited by

  1. 고압 하에서 TiO2 복합체의 거동에 대한 연구 vol.30, pp.3, 2016, https://doi.org/10.9727/jmsk.2017.30.3.127