• Title/Summary/Keyword: 대변형해석

Search Result 230, Processing Time 0.022 seconds

Development of 2-Dim Lagrangian Hydrocode and Application to Large Deformation Problems (2차원 Lagrangian Hydrocode 개발 및 대변형 해석)

  • Lee, Min-Hyung;Kim, Sung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.409-415
    • /
    • 2003
  • The purpose of this paper is to develop the 2-Dim Lagrangian Hydrocode for the analysis of large deformations of solids with implementation of the contact algorithm. First, th e governing equations are discretized into a system of algebraic equations. For more accurate and robust contact force computation. the defense node contact algorithm was adopted and implemented. For the verification of the code developed, two cases are carried out; the Taylor-Impact test and two bodies impact. The von -Mises criterion is implemented into the code with the Shock equation of state. The simulation results show a good agreement compared with the published experimental data and results from the commercial code. It is necessary to implement several material models and failure models for applications to different impact and penetration problems.

탄소성 유한요소법에 의한 박판 성형 공정의 해석(I)

  • 심현보;정완진;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.810-817
    • /
    • 1990
  • 본 연구에서는 국부질점 좌표계(natural convected coordinate system)를 이 용하여 변형을 묘사하는 대변형을 고려한 탄소성 증분수식을 유도하고 또 이에 해당하 는 유한 요소 방정식을 구하였다. 국부 질점 좌표계를 사용함으로써 변형도 성분이 나 구성 방정식의 성분들에 대한 좌표 변환 과정을 생략하도록 한다. 재료는 수직 이방성으로 가정하였다. 이 수식화의 타당성을 검증하기 위하여 원형 격막의 정수압 벌징을 해석하고 해석 결과는 실험 결과와 이미 발표된 실험 및 해석 결과와 비교하여 타당성을 검증하였다.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.

A Finite Difference Large Displacement Analysis of Rectangular Thin Glass Plate (대변형을 가지는 사각형 박형유리판의 비선형 차분해석)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.129-133
    • /
    • 1995
  • A new approach to the analysis of thin. rectangular window giass glass supported on flexible gaskets. and subjected to uniform lateral pressures was evolved. Based on the Von Karman theory of plates and using the finite difference method. a computer program which determines the deflections and stresses in simply supported thin glass plates was developed.

  • PDF

Analysis of elastic-plastic large deformation for polycrystalline solids (다결정체의 탄소성 대변형해석)

  • Kim, Young-Suk;Kim, Jung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1291-1297
    • /
    • 1997
  • Elastic-plastic finite element(FE) simulation was performed for polycrystalline solids subjected to plane strain tensile loading. Using Asaro's double slip crystal plasticity model, the polycrystalline solids were modeled by assigning different initial slip directions to each grain. From the FE calculations, the microscopic deformation characteristics of polycrystalline solids were analyzed. Moreover, the effect of grain size and grain boundaries on the deformation characteristics were clarified.

Large Deformation Analysis of Nonlinear Beam Element Based on Pseudo Lagrangian Formulation (Pseudo Lagrangian방법(方法)에 의한 비선형(非線型) 보요소(要素)의 대변형(大變形) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1990
  • A totally, new approach of Lagrangian formulation named 'Pseudo Lagrangian Formulation(PLF)' for large deformation analysis of continue and structures by the finite of element method has been presented, and the efficiency and accuracy of nonlinear analysis beam element formulated by PLF has been discussed by solving several numerical examples. In PLF, the deformation of a body is maeasured by assigning a nonphysical 'Pseudo' configuration as reference. The Lagrangian deformation and the finite element mapping of the traditonal Lagrangian approaches are then carried out directly at the same time, The result of numerical tests shows superior performance of PLF to the traditional Lagrangian methods, Applications of PLF to small and finite deformation problems indicate that PLF not only serves as an alternative but has certain implementational advantages over total or updated Lagrangian formulations.

  • PDF

Crack Length Estimation for Large Deformable Non-Linear Elastic Materials (대변형 비선형 탄성재료의 균열길이 예측)

  • Yang, Gyeong-Jin;Gang, Gi-Ju;Park, Sang-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.103-109
    • /
    • 2000
  • A method to measure the crack length in rubbery materials is described. Through dimensional analysis and experiments, an equation is derived to give the crack length as a function of the change of strain energy density in a region remote from the crack. The function is provided in a form of separated terms of loading and material, the validity of which is experimentally proved using separation parameters.

Large Deflection Analysis of Plates By Using Small Local Deflections And Rotational Unit Vectors (미소 변형 및 회전 단위 벡터를 이용한 판의 대변형 해석)

  • 이기수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.201-210
    • /
    • 2000
  • The large deflection of plate is analyzed by co-rotational formulations using small local displacements and rotating unit vectors on the nodal points. The rotational degrees of the freedom are represent ed by the unit vectors1 In the nodal points, and the equilibrium equations are formulated by using small deflection theories of the plates by assuming that the directions of the unit vectors of the nodal points are known apriori. The translational degrees of freedom are independently solved from the rotational degrees of freedom in the equilibrium equations, and the correct directions of the unit vectors are computed by the iterative scheme by imposing the moment equilibrium constraint. The equilibrium equations and the associated solution procedure are explained, and the verification problems are solved.

  • PDF

Effect of Internal Pressure on Plastic Limit Loads for Elbows with Circumferential Through-wall Crack under Closing Bending Incorporating Large Geometry Change Effects (대변형 효과를 고려한 원주방향 관통균열 엘보우의 닫힘굽힘 한계하중에 미치는 내압 영향 평가)

  • Hong, Seok-Pyo;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1778-1782
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper estimates effect of internal pressure on plastic limit loads for elbows with circumferential through-wall crack under in-plane bending incorporating large geometry change effects. Circumferential through-wall crack in extrados is considered. The FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method). For the bending mode, closing bending is considered. Other relevant variables affecting plastic limit loads are systematically varied, related to pipe bend geometry (the mean radius, thickness and bend curvature) and defect geometry (the length of circumferential through-wall crack).

  • PDF

대변형 초탄성 재료의 해석을 위한 무요소 적응기법

  • 전석기;정동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.736-739
    • /
    • 1995
  • The meshless adaptive method based on multiple scale analysis is developed to simulate large deformation problems. In the procedure, new particles are simply added to the orginal particle distribution because meshless methods do not require mesh structures in the formulations. The high scale component of the approximated solution detects the localized region where a refinement is needed. The high scale component of the second invariant od Green-Lagrangian strain tensor is suggested as the new high gradient detector for adaptive procedures. The feasibility of the proposed theory is demonstrated by a numerical experiment for the large deformation of hyperelastic materials.

  • PDF