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A Finite Difference Large Displacement Analysis of
Rectangular Thin Glass Plate

Z N I

Chi-Kyung Kim

ABSTRACT

A new approach to the analysis of thin. rectangular window giass glass supported on flexible gaskets.
and subjected to uniform lateral pressures was evolved. Based on the Von Karman theory of plates and
using the finite difference method. a computer program which determines the deflections and stresses in
simply supported thin glass plates was developed.
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1. Introduction

representing wind pressure. The first significant
analysis of thin plates was accomplished in the
Glass plates are widely used in modern early 1800s by Cauchy, Poisson, Navier and

buildings. With larger and larger sizes of glass Kirchhoff. The research done by these pioneers

plates being used in high-nise buildings, it is be-
coming important to be able to predict accurately
the response of glass plates under lateral loads
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was very significant, and many of the techniques
which they developed are used in engineering
analysis today. A nonlinear plate theoy was first
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developed by Von Karman in 1910. He coupled the
effects of in-plane force with out-of-plane
deflections. Closed form solutions for his theory,
even for simple rectangular plates, are not known.
Early investigators obtained only approximate solu-
tions by using variational methods®. However, in
the last 30 years, which the help of the digital
computer, methods such as finite differences and
finite elements have become practical. Subsquent
developments in the field of laterally loaded, thin
rectangular plates with large deflections are well

documented elsewhere®®.

2. Theoretical Model

This section provides a brief description of the
model, which was employed as part of the reseach
plan to provide prediction of stresses and displace-
ments in monolithic glass plates units.

2.1 Theory

A simply supported glass plate under lateral
pressure sustains deflections which are small in
comparison to the in-plane dimensions of the
plate, but are of the same order of magnitude as
the plate thickness. Hence, the analysis may be
classified as “small strain, large displacement”.
Because of the relatively large out-of-plane
displacements, the analysis becomes geometrically
nonlinear. This geometric nonlinearity requires that
both membrane and bending stresses be included in
the analysis. The theoretical model uses Von
Karman’s theory of nonlinear plate analysis to
characterize the small strain, large displacement
behavior of a nonlinear plate are :

DUVAW=Q+L(W,F) seeerrrrereemeiaranan. (1)
and
E
V4F=—7L(W,W) .......................... (2)
where !

D =flexural rgidity of the plate
=Et¥/12(1— v ?)
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=lateral deflection
=Airy stress function

W
F
Q =lateral pressure
t =plate thickness
E =Young’s modulus of elesticity
v =Poisson’s ratio
v*=the biharmonic operator
2! a* 3!
ox' T ooy T oy
°W 3% *°W  B%F
L(W,F)= Y Tyz-

ox2y oOx3y
C9°W 9%
8)’2 ox

The Airy stress function F defines membrane
stresses such that

sy 2F _9% _ _ 9%
gyt Y axt v ox3y
..................................................... (3)

Bending stresses can be calculated from :

6M, 6M, 6M,

b x - -

Ux—i"“?_, O'by——-i?, rbxy__i_r#
..................................................... (4)

where
aZW aZW
M, ==D(5z + 3y )
a2W aZW
M, ==D(S7 +v S
3*w
M,,=-D(1—v) EYES

Using the coordinate system defined in Figure 2,
boundary conditions for a thin, simply supported
glass plate can be represented as follows :

(1) Flexural boundary conditions :

W=0, M,=0, %zv =0 at x=%

W=0, M,=0, %zyv; =0 at y= % ------- (5)
_aa_\iV =0 at x=0

%—\;V =0 at y=0

{2) Membrane boundary conditions :
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..................................................... (6)

Figure 3 illustrates these boundary conditions.

2.2 Solution of Von Karman’s Equations

Solution of Von Karman's equations employed
the finite difference method. The biharmonic oper-
ator can be reperesented by a molecule using the
central difference formula, which can be found in a
text book on the finite difference model(Crandall,
1956). Figure 4 illustrates the biharmonic operator
and the second derivative in central difference
form. Von Karman's nonlinear Equation(1), (2)
can be represented by two algebraic functions, us-
ing the

) X,
ow ja_F:o
Wﬂ) ax
SF W=0 wjo
—=0 W
oY My=0 | 5y =0
— a%F
a“}:o W=O
SIMPLY a%F
SUPPORTED %= S35 =°
(W=0 W=0 _]
Y My= 077—0
3 a%F
aM=0 LW =0
| a7
rmxy=g.’ Frr =0
Fig. 1 Boundary conditions for simply supported thin
plate

two central difference equations. Equation 1 be-

comes -

[CHW)=Q4 (£, (W, F)) weereereeememennnne (7)
and Equation 2 becomes

[D](F):(fg(W)) ................................ (8)
where

[A] and [B]=Biharmonic operators
W=vector representing lateral displacement
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a) Biharmonic Operator in central difference form

DOO—
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b) Second derivative in central difference operator

=

Fig. 2 Two-dimensional finite difference operator

Q=vector representing load
F=vector representing Airy function
f, and f,=nonlinear functions representing part of
right side of Von Karman’s equations.
It can be seen that Equation 7 represents lateral
deflection, while Equation 8 represents the Airy
stress function. One of the major advantages of the
finite difference solution can now be illustrated.
Both matrices [A] and [B] are positive definite
and symmetric, and can therefore be decomposed
by Cholesky decomposition into U'DU where U is
an upper triangular matrix and D is a diagonal
matrix. The matrices are then coded by the compu-
ter in half bandwidths. This step is only done once
in the beginning of the solution, and the banded
matrices are then used throughout the iterations
loading leading to the solution of the W and F
vectors. Like any other iterative technique, new
values for the variables(in this case W and F)
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calculated based on values obtained from the pre-
vious iteration the f; function can be calculated
numerically from the expression for L(W, F).
The first Von Karman’s equation for the (n+1)-th
iteration becomes

[CIW™T ) =(Q)+ (£, (W", F™)) wererveeeees (9)

=(Ry)

From this, W**! can be determined. Now that
W™ is known, it can be substitute into the right
hand side of the second Von Karman equation such
that Equation 8 becomes

[D] (Fn+1):(f2(wn+l)) ....................... (10)

=(R2)
and from this F**! can be obtained.

Efficient iterative techniques using nonlinear in-
terpolation factors has been developed to reduce
computer time and to assure convergence. A
so-called relaxation parameter has been introduced,
such that

Fn+1_.=(1__A)Fn+AFn+1 .................... (11)
and
Wn+1=(1_#)wn+#wn+l ................. (12)

The parameter A and # have been optimized by
numerical experimentation with different aspect
ratios of plates such that

A=1/2
and
#=0.8/(W—1)—0.04W for W=>1.8 - (13)
#=1_W/9 for WS1.8 ....................... (14)
where
W=W"_./t

An error term is used to end the iteration when
convergence is reached in the computation of W !

€“+1==§l IW“+1j—an l /NSP(VVmax)n-H (15)

where

n =iteration number

j =node number

N =number of nodes in the grid

P =iterative tolerance number, usually 0.001
From experience, it has been determined that

convergence 1is reached in approximately 10-20

iterations.
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3. Example Problem

The example is a simply supported uniformly
loaded square plate having boundary conditions as
mentioned above. The dimensions and material
properties of the plate are given as follows

a =10in

b =10in

t =0.04in

E =10000000psi
v =(0. 316

The plate is subjected to a uniformly increasing
static load up to 0.83psi. Because of the double
symmetry of the plate, only one quarter of the
plate is used in the model. In Figure 3, the effect
of the fine mesh on the maximum deflection of the
plate is shown. The convergence of the deflection
improves as number of mesh points is increased.
The effect of the grid size on the bending stresses
at the comers of the plate is as shown in Figure 4.
These stress curves appear to converge as the grid
size become small. This is also true for the mem-
brane stresses at the center of the edge of the plate.
The difference between the finite difference solu-
tion and the finite element solution is small(as
shown by the curves in Figure 4 and Figure 5);
thus, it is unnecessary to carry the analysis further .

3.0 r
Lanear Theory

20 b 5

w/t = Z ~——- Kaiser Solution

» e———- Finite Element

1.0 9 Elements

100 Increments

Finite Difference

- —-—sa 16 Points

*——-—* 36 Points

o———= 8] Points

0.0 1 1 1 1 1
0.0 . 40.0 80.0 120.0

(o/ENa/t)*

Fig. 3 Effect of mesh size on maximum defiection
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Fig. 5 Effect of mesh size on membrane stresses along
the center edge

by refinig the mesh size to obtain results that match
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Al-Tayyib’s solution point by point. According to
Figure 3 through 5, we can state briefly that de-
flections and stresses approach the exact solution
from a lower bound as the mesh size is reduced.

1)

2)
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4. Conclusions

The following conclusions are advanced :

the results from the model developed agree well
previous solutions,

the model developed is very efficient in compu-
ter storage requirements and excusion time,
The results obtained are more accurate than
Kaiser’s solution, because for every loading,
the iteration converged exactly to the Von Kar-
man field equations,

variable mesh size allows analysis of any size of
rectangular plate.
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