K-means나 퍼지 군집화와 같은 전통적인 군집화 기법들이 원형(prototype)을 기반으로 하고 볼록한 형태의 집단들에 적합한 반면, 스펙트럼 군집화(spectral clustering)는 국부적인 유사성을 기반으로 전역적인 집단을 찾아내는 기법으로 오목한 형태의 집단들에도 적용할 수 있어 커널을 기반으로 하는 SVM과 더불어 각광을 받고 있다. 하지만 SVM이 그러하듯이 스펙트럼 군집화에서도 커널의 폭은 성능에 지대한 영향을 끼치는 요인으로, 이를 결정하기 위한 다양한 방법이 시도되었지만 여전히 휴리스틱에 의존하는 실정이다. 이 논문에서는 유사도 행렬이 보다 명백한 블록 대각 형태를 가지도록 하기 위해 국부적인 커널의 폭을 거리 히스토그램을 바탕으로 적응적으로 결정하는 방법을 제시한다. 제안한 방법은 스펙트럼 군집화에 사용되는 유사도 행렬(affinity matrix)이 블록 형태의 대각 행렬을 이룰 때 이상적인 결과를 낸다는 사실에 기반하고 있으며, 이를 위해서 전통적인 유클리디안 거리와 무작위 행보 거리(random walk distance)를 함께 사용한다. 제안한 방법은 기존의 방법들에서 사용하는 유사도 행렬에 비해 명확한 블록 대각 행렬을 나타내고 있음을 실험 결과를 통해 확인할 수 있다.
Communications for Statistical Applications and Methods
/
제3권2호
/
pp.239-247
/
1996
본 연구에서는 패널티화 대수우도 함수의 해를 구하기 위해 Lange (1995)의 EMG 알고리즘을 적용할 경우에 발생하는 문제점을 제시하고 이를 해결하기 위해 OSLG알고리즘은 EMG 알고리즘이나 Green (1990)의 OSL 알고리즘으로 해결할 수 없는 문제에 쉽게 적용된다. 한편 이 알고리즘은 EMG 알고리즘의 변형이지만 OSL 알고리즘과 같은 국소수렴성질을 갖는다. OSLG 알고리즘은 특히 페널티함수에 대한 2차 도함수행렬이 대각행렬이 아닌 응용분야에서 매우 유용하게 사용될 수 있을 것으로 기대된다.
컴퓨터 하드웨어의 급속한 발전으로 그래픽 프로세서 유닛(Graphics Processor Units : GPUs)은 굉장한 메모리 대역폭과 산술 능역을 보유하게 되어 범용 계산에 많이 활용되고 있으며, 특히 계산 집약적인 물리 기반 시뮬레이션(physics based simulation)의 GPU 구현이 활발하게 연구되고 있다. 물리 기반 시뮬레이션의 기본이 되는 미분방정식 풀이 과정에서 삼중대각행렬(tridiagonal matrix) 시스템은 유한차분(finite-difference) 근사에 의해서 자주 나타나는 선형시스템으로 물리 기반 시뮬레이션 관점에서 삼중대각행렬 시스템의 빠른 풀이는 중요한 연구 분야이다. 본 논문에서는 GPU에서 삼중대각행렬 시스템 풀이를 빠르게 구현할 수 있는 방법을 제안한다. 벡터 프로세서(vector processor) 계산에서 삼중대각행렬 시스템 풀이 방법으로 널리 사용되는 cyclic reduction 또는 odd-even reduction 알고리즘을 GPU에서 구현하였다. 본 논문에서 제안한 방법을 삼중대각행렬 시스템 풀이 방법으로 잘 알려져 있는 Thomas 방법과 GPU를 이용한 선형시스템 풀이에서 좋은 성과를 보이고 있는 conjugate gradient 방법과 비교할 때 상당한 성능 향상을 얻을 수 있었다. 또한, 열전도(heat conduction) 방정식, 이류 확산(advection-diffusion) 방정식, 얕은 물(shallow water) 방정식에 의한 물리 기반 시뮬레이션의 GPU 구현에 본 논문에서 제안한 방법을 사용하여 1024x1024 격자의 계산 영역에서 초당 35프레임 이상의 놀라운 성능을 보여주었다.
본 논문에서는 기존의 적응필터인 LMS(Least Mean Square)와 RLS(Recursive Least Square)의 수렴속도의 향상과 안정성을 개선하기 위한 방안을 제안하였다. 제안된 알고리즘은 기존의 시간영역 LMS 알고리즘보다 상당히 빠른 수렴속도를 보일 수 있도록 설계하였다. RLS 알고리즘는 역행렬연산으로 인한 연산량이 많고 자기상관행렬이 positive definite 특성을 잃어버릴 경우 시스템이 수치적으로 불안정하게 되어 발산하는 단점이 있다. 이런한 단점을 보완하기 위해 제안된 알고리즘을 사용하였다. 기존의 알고리즘은 전력 정규화 과정에서 입력신호의 변환이 백색화가 완전히 이루어지지 않게 되어 자기상관행렬이 순수한 대각행렬이 되지 않는 단점을 지니고 있으나, 본 연구에서는 이러한 대각화 과정에서 좀더 많은 정보를 포함하도록 설계하였다. 아울러 제안된 알고리즘을 적응 등화기에 적용하여 수렴속도가 개선됨을 검증하였다.
본 논문에서는 증폭 후 재전송 프로토콜 기반의 다중 안테나 다중 중계 시스템에서 저 복잡도의 전력 할당 기법을 제안한다. 기존의 다중 안테나 전처리 기법이 복소수로 구성 된 꽉 찬 행렬을 전처리 필터로 사용하였다면, 제안 하는 기법은 각 중계 노드에서 안테나 별 전력으로 구성 된 실수 대각 행렬을 전처리 필터로 사용한다고 볼 수 있다. 추가적으로 복소수 꽉 찬행렬로 유효 채널을 대각화 하지 못함에서 발생하는 오차를 감소시키기 위해 가중치 벡터를 각 스트림에 적용시켜 안테나 수와 상관없이 낮은 복잡도로 최적 성능에 근접한 성능을 얻을 수 있다. 마지막으로 모의실험을 통해 제안하는 기법이 상호정보량 측면에서 기존의 기법들보다 우수함을 보인다.
본 논문에서는 얼굴을 인식하기 위한 쌍대각 2차원 LDA를 제안하였다. 기존의 Dia2DPCA와 Dia2DLDA가 대각 방향 영상들의 행 변화량과 열 변화량 사이의 상관을 제한하기 위하여 제안되어지고 있다. 그러나 이러한 방법들은 영상들의 행방향으로 동작한다. 제한 방법에 있어서 행방향의 투영 행렬은 기존 방법과 전혀 다르게 대각 방향 얼굴 영상들의 열 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 그리고 열방향의 투영 행렬은 대각방향 얼굴 영상들의 행 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 좌우 양측의 투영 방법은 투영 행렬들을 좌우로 곱함으로써 적용된다. 그 결과로 특징 행렬의 차원과 계산 시간이 감소된다. ORL 얼굴 데이터베이스에서 수행된 실험들은 Frobenius, Yang, AMD와 같은 3가지 거리 척도를 사용하여 2DPCA, B2DPCA, 2DLDA 등과 같은 다른 얼굴 인식 방법들보다 제안된 방법의 인식률이 높음을 보여준다.
4-점 리버스 자켓 변환 (4-Point Reverse Jacket transform)의 장점 중의 하나는 4-점 fast Fourier transform(FFT)시 야기되는 실수 또는 복소수 곱셈을 행렬분해(matrix decomposition)를 이용, 곱셈인자를 모두 대각행렬에만 집중시킨, 매우 간결하고 효율적인 알고리즘이라는 점이다. 본 논문에서는 이를 N 점 FFT에 적용하는 알고리즘을 제안한다. 이 방법은 기존의 다른 변환형태보다 확장하거나 구조를 파악하기에 매우 용이하다.
비모수적 추정량의 성능을 이론적으로 비교하기 힘들 때 흔히 모의실험을 실시한다. 다양한 실험조건에서 여러 추정량에 대해 얻어진 모의실험 결과를 회귀모형을 이용해 분석하면 보다 체계적이고 정확한 비교를 할 수 있다는 것을 Kim과 Kim (2021)에서 보였다. 이 연구는 Kim과 Kim (2021)에 대한 후속연구이자 보완연구이다. 회귀모형의 오차항에 대한 분산공분산행렬에서 이분산성만 고려하고 공분산을 선행연구에서 무시했는데, 공분산을 고려하게 되면 분산공분산행렬은 블록대각행렬이 된다. 본 연구에서 블록대각행렬인 분산공분산행렬을 추정하여 분석에 이용하는 방법을 제시하였다. 이렇게 하면 명목신뢰수준을 보장하면서 유의하게 성능 차이가 나는 추정량 짝을 더 잘 찾을 수 있다는 것도 보였다.
행렬 연산은 계산 과학을 사용하는 공학 물리, 화학, 생명 과학, 경제학 등에서 다양하게 사용되고 있으며 이 행렬은 크기가 크고 대부분의 원소가 0 값을 갖는 희소 행렬일 경우가 많다. 본 논문에서는 희소 행렬의 연산 중, 회로 설계 시 최적화 과정에 사용되는 연산에서 문제가 되는 희소 행렬 A 와 블록 대각 행렬 H에 대하여 AH$A^{T}$ 의 연산을 효율적으로 행하는 방법들을 검토하고 메모리 접근 횟수를 모델링하여 수행 속도와 메모리 사용량 면에서 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.