• Title/Summary/Keyword: 단층 분석

Search Result 1,358, Processing Time 0.034 seconds

Geochemical Approach to Define the Fracture Bone Affected by the Ubo Fault at the Northern Part of the Hwabuk Dam (화북댐 상류지역을 통과하는 우보단층 파쇄대 영향분석을 위한 지화학적 접근)

  • Kwon Yong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.191-200
    • /
    • 2004
  • The Ubo fault Bone, which cross over the northwestern to southeastern direction at the Hwabuk damsite in Hakseongri, Gunwigun, Gyeongsangbukdo Province, has length about 20km. The Ubo fault zone in this area is segmented to several small faults and makes a gentle slope and hill along the right side of the drainage in the Hwabuk dam. In the storage area of Hwabuk dam, 2 pairs of faults occur and the width of fracture zones are about 2m. To define the fracture Bone using the geochemical data, the samples were collected at 0.5m, 1m, 2m, 4m, 8m, 16m and 32m apart from the center of the main fracture Bone toward north and south, respectively, and analyzed for major elements and mineral content Approaching the fracture Bone, Fe$_2$O$_3$, MgO, K$_2$O, quartz, muscovite and chlorite are increasing and Na$_2$O, CaO, plagioclase and biotite are decreasing, respectively. Based on the rock chemistry and mineral content, the range of the main fracture zone affected by the Ubo fault at Hakseongri is 2m width in total, the secondary deformed zone is 8m width in total. Finally the maximum affected range by the Ubo fault is inferred to 16m width in total.

Reactivated Timings of Yangsan Fault in the Northern Pohang Area, Korea (포항 북부지역 양산단층의 재활동 연대)

  • Sim, Ho;Song, Yungoo;Son, Moon;Park, Changyun;Choi, Woohyun;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the fault-activated timing, combined with illite-polytype quantification using the optimized full-pattern-fitting (FPF) method, and K-Ar age-dating for each size fraction($<0.1{\mu}m$, $0.1-0.4{\mu}m$, and $0.4-1.0{\mu}m$) of 4 fault clay samples. Two chronological records of brittle fault-activation events were recognized at $19.6{\pm}1.86Ma$ and $26.1{\pm}2.55-27.9{\pm}3.46Ma$. The ages are much younger than those of fault clays from Sangcheon-ri area (41.5~43.5 and 50.7 Ma), the southern part of Yangsan fault line, and are close to the timing of East Sea-opening event. Further chronological analysis for additional sites of the Yangsan fault should be needed to reveal the time-scheme of the tectonic events and their spatial distributions along the fault line.

Kinematics and ESR Ages for Fault Gouges of the Quaternary Jingwan Fault, Dangjin, western Korea (당진 지역 제4기 진관단층의 운동 특성과 단층비지의 ESR 연령)

  • Choi, Pom-Yong;Hwang, Jae Ha;Bae, Hankyoung;Lee, Hee-Kwon;Kyung, Jai Bok
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • In order to outline the kinematics and movement history of a new Quaternary fault, Jingwan Fault in Dangjin, West Korea, we analyzed the geometry of the fault zone composed of a few gouge zones, and made ESR dating for fault gouge materials. The $N55^{\circ}E$ striking Jingwan Fault is a normal fault and exhibits a gradual change in dip (gentle in the lower part, steep in the upper part), indicating a listric fault. As for the fault gouge zone, its thickness varies and reaches 2~3 cm in the lower part or between basement rocks, and 20~30 cm in the middle-upper part or between the basement and Quaternary deposit. It is observed in the latter case that more than three gouge zones develop with different colors, and branch out and re-merge, or they are partly superimposed, indicating different movement episodes. The cumulative displacement is estimated to be about 10 m using the geological cross-sections, from which it is inferred that the total length of fault may be about 2.5 km on the basis of the empirical relation between cumulative displacement and fault length. Therefore, a more study would be needed to verify the entire fault length. The results of ESR dating for three gouge samples at different spots along the fault yields ages of $651{\pm}47$, $649{\pm}96$, and $436{\pm}66ka$, indicating at least two movement episodes. Slickenlines observed on the fault planes indicate a pure dip slip (normal faulting), which suggests that the ENE-WSW trending Jingwan Fault was presumably moved under a NNW-SSE extensional environment.

Focal Mechanism Solutions of Microearthquakes in the Southwestern Part of the Korea Peninsula (한반도 남서부에서 발생한 미소지진의 진원 기구해 분석)

  • Cho, Hee-Kyu;Kang, Tae-Seob;Kyung, Jai-Bok
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.341-347
    • /
    • 2006
  • Focal mechanisms were analyzed for the seven earthquakes which occurred in the southwestern part of the Korea Peninsula from 2001 to 2005. Grid searches are performed to fit distributions of P-wave first-motion polarities and SH/P amplitude ratios for each event. The focal mechanism solutions imply that most of the events have strike-slip sense including partially thrust component. The compressional axes of the solutions are predominantly ENE-WSW or NE-SW indirections. This result is similar to the directions of the principal compressional axes for major earthquakes occurred around the Korea Peninsula.

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves (단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.368-378
    • /
    • 2019
  • Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis (회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.

Case Study about the Ground Characteristics Analysis of Tunnel Face Fault Fractured Zone (터널막장 단층파쇄대의 지반특성 분석에 대한 사례연구)

  • Min Kyoung-Nam;Lim Kwang-Su;Jang Chang-Sik;Lim Dae-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.111-118
    • /
    • 2005
  • The area of investigation belongs to Okchon metamorphic zone and the fault fractured zone runs parallel to the tunnel direction. It causes the independent decline of tunnel face and the slackness of the tunnel surrounding base so, after all, the severe displacement has occurred within the tunnel. Accordingly, the TSP(Tunnel Seismic Prediction) survey has been performed to investigate the extent of fault fractured zone and to analize its characteristics. Also, we have analized the behavior causes by performing the tunnel face mapping and drilling investigation, and confirmed the position and scale of geological anomaly area and front fractured zone which influences tunnel excavation and supporting. Collected data analyzed ground layer condition through 3 dimensional modeling. Several variables included in the modeling were analyzed by geostastistics. The analysis of the modeling data shows that the belt of weathering by fault fractured zone is developing on the basis of the right side of tunnel and that is decreasing to the left side. The fault fractured zone was confirmed that it has strike, $N0\~5^{\circ}E$ dip NW, and it is consisted of large-scale fractured zone including several anomalies. The severe displacement in tunnel is probably caused by asymmetrical load that n generated by the crossing of discontinuity and the rock strength imbalance of tunnel's both side by fault fractured zone, and judge that need tunnel reinforcement method of grouting etc.

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

Movement History of the Yangsan Fault based on Paleostress Analysis (고응력 분석을 통한 양산단층의 구조운동사)

  • 장천중;장태우
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.35-49
    • /
    • 1998
  • To interpret the movement historv of the Yangsan fault, the paleostresses were analyzed from about 1,000 striated small faults and 330 extension joints which were measured from 37 sites near and along the strike of the Yangsan fault from Yangsan-si, Kyeongsangnam-do to the Shinkwang-myeon, Kyeongsangbuk-do. Six sequential tectonic events have boen established as followings: (I) NW-SE extension, (Il) ENE-WSW compression and NNW-SSE extension, (III) NW-SE compression, (W) ENE-WSW extension, (V) E-W comoression and N-S extension, and (VI) NNE-SSW compression and(VI) NNE-SSWextension. The movement history of the Yangsan fault rnrning in NNE direction were inteepreted based on these six sequential stress fields. The initial feature of the Yangsan fault was formed at the first stage with the development of extension fractures by tectonic event (I) of NW-SE extension. The fault was acted continuously with a right-1ateral strike-slip movement by tectonic event( II) closely related to event( I). The movements had been continued until the Late Miocene. This age was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events (ffi) and (IV). The activity of the Yangsan fault was suspended temporarily by compression of tectonic event (V) which was perpendicular to the strike of the fault. This period might be very short and the magnitude of the tectonic was also small. In the last stage, the fault acted with slight extension or right-lateral moveenent by tectonic event (VI).

  • PDF

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.