• Title/Summary/Keyword: 단일 레이블

Search Result 32, Processing Time 0.021 seconds

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

Multi-Label Activity Recognition based on Inertial Sensors (관성 센서에 기반한 멀티 레이블 행위 인지)

  • Hur, Taeho;Kim, Seong-Ae;Lee, Sungyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.181-182
    • /
    • 2017
  • 관성 센서 기반 행위인지는 스마트폰과 웨어러블 밴드 등의 출현으로 보다 간편한 방법으로 행위인지가 가능해졌다. 현재 대부분의 행위인지 서비스나 연구들은 단일 행위의 결론만을 도출하고 있으나, 이러한 방식은 한 행위에서 한 가지 동작밖에 취할 수 없는 경우에는 문제가 없지만 두 가지 이상의 동작이 합쳐진 경우에 어떤 행위를 최종 결론으로 도출해야 하는지에 대한 문제점을 내포한다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 세 개의 센서 기기 (스마트폰, 스마트워치, 웨어러블 센서)를 이용한 멀티 레이블 행위인지를 제안한다. 스마트폰은 신체 전반적인 움직임 탐지를 위하여 소지위치가 정해지지 않은 비고정식 센서의 보조적인 역할을 수행한다. 스마트워치는 사용자가 주로 사용하는 손의 손목, 그리고 웨어러블 센서는 사용자의 허벅지에 부착되어 각각 상하체의 움직임을 파악한다. 이후 각 기기에서 도출된 결론에 Majority Weighted Voting 기법을 적용하여 단일 혹은 멀티 레이블의 최종 행위를 도출한다.

KE-T5-Based Text Emotion Classification in Korean Conversations (KE-T5 기반 한국어 대화 문장 감정 분류)

  • Lim, Yeongbeom;Kim, San;Jang, Jin Yea;Shin, Saim;Jung, Minyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

A Study on Facial Skin Disease Recognition Using Multi-Label Classification (다중 레이블 분류를 활용한 안면 피부 질환 인식에 관한 연구)

  • Lim, Chae Hyun;Son, Min Ji;Kim, Myung Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.555-560
    • /
    • 2021
  • Recently, as people's interest in facial skin beauty has increased, research on skin disease recognition for facial skin beauty is being conducted by using deep learning. These studies recognized a variety of skin diseases, including acne. Existing studies can recognize only the single skin diseases, but skin diseases that occur on the face can enact in a more diverse and complex manner. Therefore, in this paper, complex skin diseases such as acne, blackheads, freckles, age spots, normal skin, and whiteheads are identified using the Inception-ResNet V2 deep learning mode with multi-label classification. The accuracy was 98.8%, hamming loss was 0.003, and precision, recall, F1-Score achieved 96.6% or more for each single class.

A Study of Active Pulse Classification Algorithm using Multi-label Convolutional Neural Networks (다중 레이블 콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘 연구)

  • Kim, Guenhwan;Lee, Seokjin;Lee, Kyunkyung;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 2020
  • In this research, we proposed the active pulse classification algorithm using multi-label convolutional neural networks for active sonar system. The proposed algorithm has the advantage of being able to acquire the information of the active pulse at a time, unlike the existing single label-based algorithm, which has several neural network structures, and also has an advantage of simplifying the learning process. In order to verify the proposed algorithm, the neural network was trained using sea experimental data. As a result of the analysis, it was confirmed that the proposed algorithm converged, and through the analysis of the confusion matrix, it was confirmed that it has excellent active pulse classification performance.

Multi-Label Classification Approach to Effective Aspect-Mining (효과적인 애스팩트 마이닝을 위한 다중 레이블 분류접근법)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.81-97
    • /
    • 2020
  • Recent trends in sentiment analysis have been focused on applying single label classification approaches. However, when considering the fact that a review comment by one person is usually composed of several topics or aspects, it would be better to classify sentiments for those aspects respectively. This paper has two purposes. First, based on the fact that there are various aspects in one sentence, aspect mining is performed to classify the emotions by each aspect. Second, we apply the multiple label classification method to analyze two or more dependent variables (output values) at once. To prove our proposed approach's validity, online review comments about musical performances were garnered from domestic online platform, and the multi-label classification approach was applied to the dataset. Results were promising, and potentials of our proposed approach were discussed.

Sea Ice Type Classification with Optical Remote Sensing Data (광학영상에서의 해빙종류 분류 연구)

  • Chi, Junhwa;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1239-1249
    • /
    • 2018
  • Optical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.

Architecture and Characteristics of Multi-Ring based Optical Network with Single-Hop between Edge Nodes (Edge Node간 단일 홉을 갖는 다중링 기반의 광네트워크 구성 및 특성)

  • Lee, Sang-Hwa;Lee, Heesang;Han, Chimoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.69-78
    • /
    • 2004
  • This paper proposes architecture and characteristics of a multi-ring based optical network with single-hop between edge nodes using the concept of circuit switching and multi-wavelength label switching to solve delay problem caused by applying crossconnectors as transit nodes in the wavelength division multiplexing(WDM) network. We suggest multi-ring based architecture composed single and multiple wavelength-bands with multi-wavelength labels, and analyze characteristics of two models. To avoid the packet collision in output ports of edge nodes due to output contention, the static and dynamic allocation scheme, which packets are allocated in time slots, is provided. Based on our analysis, it shows that delay only occur in not core nodes but edge nodes in the proposed architecture. In addition, we evaluate the probabilities of delay, packet loss, and call blocking in the proposed optical packet network.

Traffic Engineering using Loss Detection in MPLS Networks (MPLS 네트웍에서의 Loss Detection을 이용한 트래픽 엔지니어링 방안 연구)

  • 이성협;염익준;박원배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.163-165
    • /
    • 2001
  • 본 논문에서는 먼저 Forwarding 방식의 라우팅 프로토콜인 MPLS(Multi-Protocol Label Switching)와 네트웍에서의 Traffic Engineering(TE)에 대한 개괄적인 설명과 함께, MPLS 네트웍 내에서의 트래픽 엔지니어링에 대해 기술한다. 그리고 MPLS 도메인 양 끝단에서 단일 경로의 패킷에 대한 MPLS 헤더의 레이블 번호를 이용한 동일한 패킷인지에 대한 확인 방안과 MPLS 도메인 내에서 Loss Detection 메커니즘을 이용한 효율적인 트래픽 엔지니어링방안을 제안한다. 향후 본 연구 방안을 적용하게 되면, 차등 서비스(Differentiated Services, Diffserv)를 제공하는 네트웍 환경의 핵심 망과 Mobile IP 기반의 무선 네트웍 환경에서 유선 네트웍의 Quality of Service(QoS)를 향상시킬 수 있을 것이다.

Group Dynamic Source Routing Protocol for Wireless Mobile Ad Hoc Networks (무선 이동 애드 혹 네트워크를 위한 동적 그룹 소스 라우팅 프로토콜)

  • Kwak, Woon-Yong;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1034-1042
    • /
    • 2008
  • It is very hard, but important to sustain path stability for a reliable communication in mobile ad hoc networks. We propose a novel source routing protocol that establishes a group path with virtual multiple paths to enable a robust communication. The entire mobile nodes form a disjoint set of clusters: Each has its clusterhead as a cluster leader and a unique cluster label to identify itself from other clusters. A group path is a sequence of cluster labels instead of nodes and the nodes with the same label collaborate to deliver packets to a node with next label on the group path. We prove by resorting to simulation that our proposed protocol outperforms the existing key routing protocols, even for a network with a high node mobility and a high traffic.