DOI QR코드

DOI QR Code

A Study of Active Pulse Classification Algorithm using Multi-label Convolutional Neural Networks

다중 레이블 콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘 연구

  • Received : 2020.06.17
  • Accepted : 2020.07.20
  • Published : 2020.08.31

Abstract

In this research, we proposed the active pulse classification algorithm using multi-label convolutional neural networks for active sonar system. The proposed algorithm has the advantage of being able to acquire the information of the active pulse at a time, unlike the existing single label-based algorithm, which has several neural network structures, and also has an advantage of simplifying the learning process. In order to verify the proposed algorithm, the neural network was trained using sea experimental data. As a result of the analysis, it was confirmed that the proposed algorithm converged, and through the analysis of the confusion matrix, it was confirmed that it has excellent active pulse classification performance.

본 논문에서는 다중 레이블 콘볼루션 신경회로망(Multi-label Convolution Neural Networks)을 이용하는 능동펄스 식별 알고리즘을 제안한다. 제안하는 기법은 기존의 단일 레이블 기반 알고리즘이 여러 개의 신경회로망 구조로 되어 있던 것과 달리 하나의 신경회로망 구조로 능동펄스의 정보를 한번에 획득할 수 있으며, 학습과정 역시 간편해지는 장점이 있다. 제안한 능동펄스 식별 알고리즘을 검증하기 위해서 해상실험 데이터를 이용하여 신경회로망을 학습시키고 성능을 분석하였다. 분석결과 제안한 능동펄스 식별 알고리즘이 수렴하는 것을 확인하였으며, 오차행렬(Confusion Matrix) 분석을 통하여 우수한 능동펄스 식별성능을 가지는 것을 확인하였다.

Keywords

References

  1. Cox, H. (1989). Fundamentals of Bistatic Active Sonar. Handbook of Underwater Acoustic Data Processing, (edit) Chan Y. T., Springer, Netherlands.
  2. Kim, G. H., Choi, S. R., Yoon, K. S., and Lee, K. K. (2019). Active Pulse Classification Algorithm using Convolutional Neural Networks, The Journal of the Acoustical Society of Korea, 38(1), 106-113. https://doi.org/10.7776/ASK.2019.38.1.106
  3. Kim, J. G. (2006). Whitening Method for Performance Improvement of the Matched Filter in the Non-white Noise Environment, Journal of the Korea Industrial Information Systems Research, 11(3), 15-19.
  4. Krizhevsky, A., Ilya, S., and Geoffrey, E. H., (2012). Imagenet Classification with Deep Convolutional Neural Networks, Advances in Neural Information Processing Systems, 1097-1105
  5. Lee, C. W., and Oh, S.-B. (2000). A Data Processing System on the Transportable Meteorological Radar, Journal of the Korea Industrial Information Systems Research, 5(3), 44-50.
  6. Lee, D. H., Jung, T. J., Lee, K. K., and Hyun, M. (2012). Source Information Estimation using Enemy's Single-ping and Geographic Information in Non-cooperative Bistatic Sonar, IEEE Sensor Journal, 12(9), 2784-2790. https://doi.org/10.1109/JSEN.2012.2203454
  7. Magistris, D. G., Stinco, P., Bates, J. R., Topple, J. M., Canepa, G., Ferri, G., Tesel, A., and Page K. L. (2019). Automatic Object Classification for Low-frequency Active Sonar using Convolutional Neural Networks, Oceans 2019 MTS/IEEE Seattle. IEEE.
  8. Mitra, S. K. (2001). Digital Signal P rocessing: A Computer-Based Approach. 2nd Ed. New York: McGraw-Hill.
  9. Neumeister, D. (2002). Strategies and Future Trends in Submarine Intercept-processing with an Example of an Intercept Entropy Detector, UDT EUROPE, 1-6.
  10. Sakashita, Y., and Aono, M. (2018), Acoustic Scene Classification by Ensemble of Spectrograms based on Adaptive Temporal Divisions, Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge.
  11. Satt, A., Rozenberg, S., and Hoory, R. (2017). Efficient Emotion Recognition from Speech using Deep Learning on Spectrograms. Interspeech, Interspeech, 1089-1093
  12. Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview, Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  13. Schmidt-Schierhorn, H., Corsten, A., Strassner, B., Benen, S., and Meister, M. (2007), The Use of Bistatic Sonar Functions on Modern Submarines, UDT EUROPE, 5-7.
  14. Urick, R. J. (1967). Principles of Underwater Sound for Engineers, McGraw-Hill Book Company.
  15. Waite, A. D, (2002). Sonar for P ractising Engineers, New York: Wiley.