Browse > Article
http://dx.doi.org/10.7780/kjrs.2018.34.6.2.8

Sea Ice Type Classification with Optical Remote Sensing Data  

Chi, Junhwa (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute)
Kim, Hyun-cheol (Unit of Arctic Sea-Ice Prediction, Korea Polar Research Institute)
Publication Information
Korean Journal of Remote Sensing / v.34, no.6_2, 2018 , pp. 1239-1249 More about this Journal
Abstract
Optical remote sensing sensors provide visually more familiar images than radar images. However, it is difficult to discriminate sea ice types in optical images using spectral information based machine learning algorithms. This study addresses two topics. First, we propose a semantic segmentation which is a part of the state-of-the-art deep learning algorithms to identify ice types by learning hierarchical and spatial features of sea ice. Second, we propose a new approach by combining of semi-supervised and active learning to obtain accurate and meaningful labels from unlabeled or unseen images to improve the performance of supervised classification for multiple images. Therefore, we successfully added new labels from unlabeled data to automatically update the semantic segmentation model. This should be noted that an operational system to generate ice type products from optical remote sensing data may be possible in the near future.
Keywords
Active learning; Convolutional neural network; Deep learning; Sea ice; Semantic segmentation; Semi-supervised learning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aagaard, K. and E. C. Carmack, 1989. The Role of Sea Ice and Other Fresh-Water in the Arctic Circulation, Journal of Geophysical Research-Oceans, 94: 14485-14498.   DOI
2 Breivik, L. A., S. Eastwood, and T. Lavergne, 2012. Use of C-Band Scatterometer for Sea Ice Edge Identification, IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2669-2677.   DOI
3 Bruzzone, L. and D. F. Prieto, 2001. Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 39(2): 456-460.   DOI
4 Bruzzone, L., M. M. Chi, and M. Marconcini, 2006. A novel transductive SVM for semisupervised classification of remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3363-3373.   DOI
5 Cavalieri, D. J., T. Markus, D. K. Hall, A. Ivanoff, and E. Glick, 2010. Assessment of AMSR-E Antarctic Winter Sea-Ice Concentrations Using Aqua MODIS, IEEE Transactions on Geoscience and Remote Sensing, 48(9): 3331-3339.   DOI
6 Cavalieri, D. J., T. Markus, D. K. Hall, A. J. Gasiewski, M. Klein, and A. Ivanoff, 2006. Assessment of EOS aqua AMSR-E Arctic Sea ice concentrations using Landsat-7 and airborne microwave imagery, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3057-3069.   DOI
7 Chi, J. and H. Kim, 2017. Prediction of Arctic Sea Ice Concentration Using a Fully Data Driven Deep Neural Network, Remote Sensing, 9(12): 1305.   DOI
8 Cho, K. and K. Naoki, 2015. Advantages of AMSR2 for Monitoring Sea Ice from Space, Proc. of Asian Conference on Remote Sensing, Manila, Philippines, Oct. 19-23.
9 Chollet, F., 2018. Deep Learning with Python, Manning Publications Co., NY, USA.
10 Crawford, M. M., D. Tuia, and H. L. Yang, 2013. Active learning: Any value for classification of remotely sensed data?, Proceedings of the IEEE, 101(3): 593-608.   DOI
11 LeCun, Y., Y. Bengio, and G. Hinton, 2015. Deep learning, Nature, 521(7553): 436-444.   DOI
12 Foody, G. M., A. Mathur, C. Sanchez-Hernandez, and D. S. Boyd, 2006. Training set size requirements for the classification of a specific class, Remote Sensing of Environment, 104(1): 1-14.   DOI
13 Ivanova, N., O. M. Johannessen, L. T. Pedersen, and R. T. Tonboe, 2014. Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Transactions on Geoscience and Remote Sensing, 52(11): 7233-7246.   DOI
14 Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012. ImageNet Classification with Deep Convolutional Neural Networks, Proc. of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, Dec. 3-6, vol. 1, pp. 1097-1105.
15 Ressel, R., A. Frost, and S. Lehner, 2015. A Neural Network-Based Classification for Sea Ice Types on X-Band SAR Images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3672-3680.   DOI
16 Liu, J. P., J. A. Curry, and D. G. Martinson, 2004. Interpretation of recent Antarctic sea ice variability, Geophysical Research Letters, 31(2).
17 Ma, X. R., H. Y. Wang, and J. Wang, 2016. Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning, ISPRS Journal of Photogrammetry and Remote Sensing, 120: 99-107.   DOI
18 Noh, H., S. Hong, and B. Han, 2015. Learning deconvolution network for semantic segmentation, Proc. of the IEEE international conference on computer vision, Santiago, Chile, Dec. 11-18, pp. 1520-1528.
19 Shelhamer, E., J. Long, and T. Darrell, 2017. Fully Convolutional Networks for Semantic Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640-651.   DOI
20 Shen, X., J. Zhang, J. Meng, J. Zhang, and C. Ke, 2017. Sea ice type classification based on random forest machine learning with Cryosat-2 altimeter data, Proc. of 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, May 19-21.
21 Spreen, G., L. Kaleschke, and G. Heygster, 2008. Sea ice remote sensing using AMSR-E 89-GHz channels, Journal of Geophysical Research-Oceans, 113(C2).
22 Tuia, D., E. Pasolli, and W. J. Emery, 2011. Using active learning to adapt remote sensing image classifiers, Remote Sensing of Environment, 115(9): 2232-2242.   DOI
23 Zhang, L. P., L. F. Zhang, and B. Du, 2016. Deep Learning for Remote Sensing Data A technical tutorial on the state of the art, IEEE Geoscience and Remote Sensing Magazine, 4(2): 22-40.   DOI
24 Tuia, D., F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery, 2009. Active Learning Methods for Remote Sensing Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 47(7): 2218-2232.   DOI
25 Vavrus, S. and S. P. Harrison, 2003. The impact of sea-ice dynamics on the Arctic climate system, Climate Dynamics, 20(7-8): 741-757.   DOI
26 Yang, H. L. and M. M. Crawford, 2016. Spectral and Spatial Proximity-Based Manifold Alignment for Multitemporal Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 54(1): 51-64.   DOI
27 Zhu, X., 2006. Semi-supervised learning literature survey, Computer Science, University of Wisconsin-Madison, Madison, WI, USA.