• Title/Summary/Keyword: 단위 하중법

Search Result 47, Processing Time 0.023 seconds

Yield Load Interpretation for Drilled Shaft Foundations by Hyperbolic Approximation (쌍곡선 근사에 의한 현장타설말뚝의 항복하중 판정)

  • Won, Sang-Yeon;Hwang, Seong-Il;Jo, Nam-Jun
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.79-86
    • /
    • 1996
  • This study develops a new method for interpreting the yield load from load tests on drilled shaft foundations ended on general soils, which is defined as a point where the maximum curvature on the hyperbolic-approximated load-settlement curve occurs. How ever, the point of maximum curvature is a variable depending on the units and scales of the load and settlement. Therefore, to obtain a unique maximum curvature point, both the load and settlement must be normalized by proper parameters, respectively, and be expressed on the same scaled arses(1:1). Normalization has been processed so that the yield load by the new interpretation is to be close to the average of yield loads interpreted by other methods investigated in this study. The quantitative comparison between the new criterion and other conventitonal methods is presented.

  • PDF

Elastic Critical Loads of Rectangular Plates Under Patch toads (부분 분포하중이 재하된 직4각형 평판의 임계하중)

  • Lee, Soo-Gon;Kim, Soon-Chul;Song, Yong-Yuk;Song, Sang-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.549-556
    • /
    • 2002
  • 주변이 Kinney의 정의에 따른 부분 고정도를 가지고 지지된 직4각형 평판이 부분 분포하중을 받고 있을 때의 안정해석을 유한 요소법으로 수행하였다. 수치해석에서 고려한 변수는 평판의 변장비 (=λ)와 부분 분포하중 작용폭 (=γ) 및 부분 고정도 (=f) 값이다. 여기서 특히 f=0.0 은 주변이 단순지지를 표시하고 f=1.0은 고정지지를 뜻하는데 수치해석에서는 f=0.0, 0.2, …, 1.0으로 변화시켰다. 유한 요소법으로 산정한 판의 좌굴계수 변화는 각각의 변장비에 대하여 나머지 두 개의 매개변수를 변랑으로 하는 대수 함수식으로 표시하였다. 제안한 대수식으로 추정한 임계하중치와 유한 요소법으로 산정한 임계하중치 간의 상관계수는 모든 변장비에 대하여 거의 단위치 (ρ=1.0)에 가까웁다. 따라서 제안한 대수 함수식은 구조 설계자들의 판 설계 및 안정 검토시에 유익한 자료로 이용될 수 있다.

  • PDF

A Method to Reduce the Wind-Load Applied on High-Rise Buildings using the Resizing Method (재분배기법의 고유진동수 조절 특성을 이용한 고층건물에 작용하는 풍하중 감소 방법)

  • Choi, Se-Woon;Park, Sung-Woo;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.725-728
    • /
    • 2010
  • 풍력실험결과를 이용한 풍하중 산정 방법은 고층건물에 작용하는 풍하중을 산정하는 대표적인 방법이다. 일반적인 고층건물의 경우, 이 방법은 구조물의 형상에 변화가 없다면, 구조물의 고유진동수가 증가할수록 구조물에 작용하는 풍하중 크기는 감소하는 특성을 가지고 있다. 한편, 재분배기법은 단위하중법을 통해 계산되는 변위기여도를 근거로 하여 구조물의 형상은 유지하면서 각 부재 단면의 크기만을 변화시켜서 구조물의 강성을 조절하는 설계기법이다. 이 방법은 효과적인 물량 재분배를 통해 구조물의 강성을 증가시키고 이를 통해 구조물의 고유진동수를 증가시키는 특징을 가진다. 본 논문에서는 재분배기법을 이용하여 고층건물 구조설계 시 구조물에 작용하는 풍하중 크기를 합리적으로 감소시키는 방법을 제안하였다. 제안된 방법을 풍력실험을 실시한 실구조물에 적용한 결과 구조물에 작용하는 풍하중 크기가 감소하고, 이를 통해 구조물량을 효과적으로 감소시킬 수 있음을 확인하였다.

  • PDF

Development of Load and Resistance Factor Design of Mound Breakwater Against Circular Failure (경사식 방파제 원호파괴에 대한 하중저항계수 설계법 개발)

  • Kim, unghwan;Huh, Jungwon;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.205-214
    • /
    • 2019
  • Load and resistance factor design of mound breakwater against circular failure was developed in this study. To achieve the goal, uncertainties of parameters of soils, mound, and concrete cap were determined. Eight design cases of domestic mound breakwaters were collected and analyzed. Monte Carlo Simulation was implemented to determine the most critical slip surfaces of the design cases. Using the results of Monte Carlo Simulation, First-Order Reliability Method (FORM) was used to perform reliability analyses. Optimal load and resistance factors were calculated using the reliability analysis results and final load and resistance factors were proposed based on the calculated optimal factors.

Determination of Eigenvalues of Sinusoidally Tapered Members by Finite Element Method (유한요소법을 이용한 정현상으로 taper진 부재의 고유치 산정)

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • The two eigenvalues (elastic critical load and natural frequency of lateral vibration) of sinusoidally tapered bats with simply supported ends were determined by the finite element method. For the convenience of structural engineers who are engaged in the structural design or vibration analysis of tapered beam-columns, eigenvalue coefficients were expressed by simple algebraic equations. The validity of each algebraic equation was confirmed by the value of unity for each correlation coefficient. The influence of axial thrust on the lateral vibration frequency was also investigated. For this purpose, the axial thrust was increased successively and the corresponding frequency was calculated. The approximate linear relationship between the axial thrust and the square of the frequency was confirmed lot each of the tapered members.

  • PDF

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

Influence Line of Three- span Continuous Curved Box-Girder Bridge using Elastic Equation (탄성방정식을 이용한 3경간 연속곡선교의 영향선에 관한 연구)

  • 장병순;장준환;김수정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2001
  • In this paper, a three-span continuous box girder is analysed by using elastic equation based on energy method, concerning the behaviour with the effects of bending and pure torsional moment. The statically indeterminate forces of a three-span continuous curved box girder are calculated by applying the principle of least work to this elastic equation. The influence line of shear force, bending moment, pure torsion, displacement and angle of rotation due to unit vortical load and unit torque for curved box girder are obtained. The internal forces of the curved box girder which the actual load is applied can be calculated using the influence line obtained from this study.

  • PDF

Numerical Approach Technique of Spherical Indentation for Material Property Evaluation of Hyper-elastic Rubber (초탄성 고무 물성평가를 위한 구형 압입시험의 수치접근법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng;Kim, Dong-Wook
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • In this work, effects of hyper-elastic rubber material properties on the indentation load-deflection curve and subindenter deformation are first examined via finite element (FE) analyses. An optimal data acquisition spot is selected, which features maximum strain energy density and negligible frictional effect. We then contrive two normalized functions, which map an indentation load vs. deflection curve into a strain energy density vs. first invariant curve. From the strain energy density vs. first invariant curve, we can extract the rubber material properties. This new spherical indentation approach produces the rubber material properties in a manner more effective than the common uniaxial tensile/compression tests. The indentation approach successfully measures the rubber material properties and the corresponding nominal stress-strain curve.

Estimation of Ultimate Pullout Resistance of Soil-Nailing Using Nonlinear (비선형회귀분석을 이용한 가압식 쏘일네일링의 극한인발저항력 판정)

  • Park, Hyun-Gue;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.65-75
    • /
    • 2016
  • In this study, we constructed a database by collecting field pullout test data of the soil nailing using pressurized grouting, and suggested a method to estimate the ultimate pullout resistance using nonlinear regression analysis to overcome the problems of ultimate pullout resistance estimation using graphical methods. The load-displacement curve estimated by nonlinear regression showed a very high correlation with the field pullout test data. Estimated ultimate pullout load by nonlinear regression method was average 29% higher than estimated ultimate pullout load using previous graphical method. A sigmoidal growth model was found to be the best-fitting nonlinear regression model against rapid pullout failure. Further, an asymptotic regression model was found to be the best fit against progressive nail pullout. The unit ultimate skin friction suggested in this research reflected in the domestic geotechnical characteristics and the specifications of the pressurized grouting method. This research is expected to contribute towards establishing an independent design standard for the soil nailing by providing solutions to the problems that occur when using design charts based on foreign research.

Reliability Analysis of Open Cell Caisson Breakwater Against Circular Slip Failure (무공케이슨 방파제의 원호활동에 대한 신뢰성 분석)

  • Kim, Sunghwan;Huh, Jungwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.193-204
    • /
    • 2019
  • Reliability analyses of sixteen domestic design cases of open cell caisson breakwaters against circular sliding failure were conducted in this study. For the reliability analyses, uncertainties of parameters of soils, mound, and concrete cap were assessed. Bishop simplified method was used to obtain load and resistance of open cell caisson breakwater for randomly generated open cell caisson breakwater. Sufficient number of Monte Carlo simulations were conducted for randomly generated open cell caisson breakwaters, and statistical analysis was conducted on loads and resistances collected from the large number of Monte Carlo simulations. Probability of failure produced from Monte Carlo simulation has a nonconvergence issue for very low probability of failure; therefore, First-Order Reliability Method (FORM) was conducted using the statistical characteristics of loads and resistances of open cell caisson breakwaters. In addition, effects of safety factor, uncertainties of load and resistance, and correlation between load and resistance on reliability of open cell caisson breakwaters against circular sliding failure were examined.