• Title/Summary/Keyword: 단백질 가수분해 효소

Search Result 380, Processing Time 0.031 seconds

A Trend in Research and Development of Natural Gardenia Pigments (천연 치자 색소의 연구개발 동향)

  • Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.271-277
    • /
    • 2007
  • Natural pigments have many applications like colouring agent, pigments, food additives, and antiseptics. At present, instead of synthetic pigments that have contributed to the development of industry, many kinds of natural pigments have been developed. The constituents of gardenia fruits, Gardenia jasminoides ELLIS, are traditionally known as herb medicine and natural dyes/pigments due to the customer is needs. The fruits produce yellow carotenoid pigments and iridoid compounds. The two main components in the yellow pigments are called crocin and crocetin. The extraction mode of yellow pigment from Gardenia is depended upon the extraction time, temperature, and volume of solvent. Red pigments or blue pigments formed from geniposide and amino acids have been reported a lot. Geniposide, the principal iridoid glucoside contained in gardenia fruit, was hydrolyzed to genipinic acid or genipin as a precursor for the pigment by enzymatic or chemical reaction. These red or blue pigments prepared with materials hydrolyzed of geniposide and amino acid and had properties governed by the electrostatic character of the amino acid. The pigments showed good stability to heat and pH but were gradually bleached by light while the other natural pigments are unstable in light, heat, acid, and base solution. The safety of the pigments was considered to be of little virulences in comparison to synthetic pigments.

Processing Conditions of Dried Shellfish Condiments (패류를 이용한 분말조미료 가공조건)

  • BAE Tae-Jin;CHOI Ok-Soo;KANG Hoon-I
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.175-179
    • /
    • 1999
  • Processing conditions for dried condiments with oyster, pen shell and cockle shell were investigated. The enzymatic hydrolysis for 3 hours was more profitable than hydrothermal extraction to develop flavoring matters from oyster, pen shell and cockle shell. As a result of omission tests, nucleotides were predominated in the taste compounds of shellfish hydrolysates rather than free amino acids, and the contribution of nucleotides and free amino acids to the taste of shellfish hydrolysates was remarkable. The major flavoring components of shellfish hydrolysates were free amino acids and oligopeptides below 500 dalton. When shellfish hydrolysates were separated with membrane (molecular weight cutoff 500 dalton) for recovering flayer, recovering yields of amino type nitrogen were $92.1\~92.8\%$. Moisture contents of dried shellfish condiments prepared with pretense hydrolyzed oyster, pen shell and cockle shell were $3.5\%,\;3.8\%$ and $3.7\%$, respectively. Contents of total nitrogen were $69.4\%,\;78.8\%$ and $74.2\%$, and those of amino nitrogen were $45.5\%,\;48.9\%$ and $45.4\%$, respectively. Drying yield, solubility and absorption rates at Aw 0.88 were $11.7\%,\;78.4\%$ and $6.8\%$ in oyster, $8.2\%,\;73.6\%$ and $6.1\%$ in pen shell, $9.8\%,\;76.9\%$ and $6.6\%$ in cockle shell, respectively.

  • PDF

Peptide Production from the Washing Liquid of the Fish Paste of Alaska pollak (Theragria chalcogramma) by Immobilized Enzyme (고정화 효소를 이용한 명태고기풀 수세액으로부터 Peptide 생산에 관한 연구)

  • SHIN Suk-U;SUETSUNA Kunio
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.466-472
    • /
    • 1997
  • Peptides separated from fish paste washing liquid of an Alaska pollak (Theragria chalcogramma) were purified and characterized. The fish paste washing liquid (supernatant) was separated by centrifugation of fish paste homogenate. The fish paste washing liquid of $0.5\%$ concentration was hydrolyzed for 24 hour at $50^{\circ}C$ by immobilized protease in bioreactor and decomposing liquid of protein having $50\%$ decomposing rate (OPA method) was obtained. The crude peptide fractions were obtained from this liquid by Dowex 50w $(H^+)$ column chromatograpy. Purified peptides (SP-fraction peptides) were fractionated by using SP-Sepadex C-25 $(H^+)$ column chromatography. Molecular weights and amino acid compositions of these peptides were estimated by Sephadex G-50 column chromatography and HPLC, respectively. when the washed peptides was eluated with $0.6\~0.9\%\;and\;1.2\~2.0\%$ of NaCl, peptides composed of weakly basic amino acids and strongly basic amino acid were respectively eluted. Molecular weights of each peptide fractions showed the broad distribution from 1,000 Da to 3,000 Da in the order of SP-4>SP-3>SP-2>SP-1. Peptides contained a large quantity of glycine, arginine, glutamic acid, and alanine in the washed peptide and its SP-tractions, respectively.

  • PDF

Characteristics of Mung Bean Powders After Various Hydrolysis Protocols (녹두분말의 가수분해 조건에 따른 특성 비교)

  • Kim, Ok-Mi;Gu, Young-Ah;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.301-307
    • /
    • 2007
  • To efficiently use Korean mung beans, the functional characteristics of mung bean powder(A), unhydrolyzed mung bean flour(B), and mung bean flour hydrolyzed under optimum conditions(C), were compared. The contents of protein, fat, carbohydrate, ash, and water, did not vary greatly with different treatment methods. The color values of (B) and (C) were similar, while the L value of (A) was higher than those of the other samples. Thereducing sugar content of (C) was highest at 292.63 mg%, while the total phenol contents of (A) and (C) were similar at 38.63 mg% and 38.38 mg%, respectively. The molecular weight of (A) was under 17 kDa by SDS-PAGE, and was lower than the molecular weights of the other samples (B, C), which generally ranged from 17 kDa to 72 kDa. The free sugar content of (C) was highest at 1,125.16 mg%, while (A) and (B) yielded values of 86.36 mg% and 54.20 mg%, respectively. Total free amino acid contents were in the order(C)(B)(A), and were 22,116.35 mg%, 2,731.29 mg%, and 578.54 mg%, respectively. The amino acid content of (C) was 8,231.42 mg% and was higher than those of (A) or(B). The DPPH free radical scavenging abilities of (A) and (C) were high, at 62.1% and 57.63%, respectively, while (B) showed a lower value at 19.26%. Fibrinolytic activity was highest(24.01%) in (C), and was 20.69% in (A) and 18.06% in (B). The above results indicate that mung bean flour hydrolyzed under optimal conditions (C) had the highest functional and quality characteristics, in comparisonh with unhydrolyzed flour (B) and mung bean powder (A). Diverse applications of hydrolyzed mung bean flour are anticipated.

Protein Isolates from Rapeseed: (Countercurrent Extraction and Isoelectric Precipitation) (역류추출(逆流抽出) 및 등전침전(等電沈澱)에 의한 유채박(油菜粕) 단백질(蛋白質)의 분리(分離))

  • Yang, Chang-Il;Koh, Jeong-Sam;Kim, Kye-Sic
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.162-172
    • /
    • 1978
  • We have studied to develop a process for the preparation of protein isolates free of isothiocyanate and oxazolidine-thione when defatted meal was extrracted with a cold alkaline solution at pH11.0. The rapeseed protein isolates were separated at $0^{\circ}C$ using 1% sodium algiante of 500 cps as a precipitation aid, also. The proteins had original colors, namely, a grey curd at pH 6.7, a light cream at pH 5.6 and a yellow cream at pH 5.0, The purity and the color was improved by washing with water and freez-drying with acetone, not at room temperature. A countercurrent procedure was a prerequisite for a continuous large scale production of protein isolates.

  • PDF

Production and Characterization of Selenium Peptide from Saccharomyces Cerevisiae (효모를 이용한 selenium peptide 생산 및 특성 연구)

  • 김은기;김영옥;이정옥;이백석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • Selenium containing peptide was produced by culturing yeast with selenium, Selenium was broadly incorporated in the various size of proteins based on the GPC analysis of the total yeast protein. The ratio of selenium to protein increased with the concentration of added selenium in the culture medium. Antioxidant activity (glutathione peroxidase-like activity) was proportional to the concentration of selenium concentration in the peptide. Different size of proteins were obtained by hydrolyzing the total yeast protein by protease XIV. Average molecular weight of selenium peptide was analyzed by GPC. Glutathione peroxidase (GPx) activity of the selenium peptide increased as the size of peptide decreased. Sodium selenite had strong inhibition on the yeast growth than sodium selenate. The ratio of selenium to protein was higher with sodium selenate than with sodium selenite. These results showed the potentials of selenium peptide production by yeast cultivation.

Purification and properties of a basic inducible protein, ICG with chitinase and ${\beta}-1,3-glucanase$ activities from rice cell suspension culture media treated with chitooligosaccharides (Chitooligosaccharides 처리에 의해 유도되는 chitinase, ${\beta}-1,3-glucanase$ 활성 보유 벼 염기성 단백질 ICG의 분리 및 성질)

  • Um, Sung-Yon;Park, Hee-Young;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.43-48
    • /
    • 1994
  • A basic inducible protein, ICG, containing chitinase and ${\beta}-1,3-glucanase$ activity concomittantly was purified from cell suspension culture media of rice after the treatment of chitooligosaccharides. The isolated ICG enzyme gave a single band on native and SDS polyacrylamide gel electrophoresis and its molecular weight was estimated to be 52.53 kd. The optimal temperature and optimal pH of both enzyme activities in ICG were $60^{\circ}C$, pH 6.0 for chitinase activity and $37^{\circ}C$, pH 4.0 for ${\beta}-1,3-glucanase$ activity. $K_M$ and $V_{max}$ values for chitinase were 0.474 mM. 2.997 nM/min., and those for ${\beta}-1,3-glucanase$ were 1.004 mM 0.739 nM/min. respectively. TLC analysis of the chitooligosaccharide hydrolysates with ICG enzyme indicated that ICG acts as endochitinase.

  • PDF

Functional Properties of Egg Shell Membrane Hydrolysate as a Food Material (난각막 분해물의 식품 소재로서 기능적 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.267-273
    • /
    • 2002
  • The functional properties of egg shell membrane hydrolysate by Bacillus licheniformis(EESMH) and NaOH-ethanol(AESMH) as a food material were investigated.. The yield of egg shell membrane hydrolysate was about 15% by Bacillus licheniformis, whereas that was 70% by NaOH-ethanol. Histidine content was higher in EESMH (18.69%) than in AESMH (2.56%). Both EESMH and AESMH showed high protein solubility (>95%). Emulsi-fying activity and stability of EESMH were higher than those of AESMH. foaming capacity and stability of AESMH were 2 times higher than those of EESMH in the pH ranges from 2 to 12. The AESMH had antioxidative activity whereas EESMH had not. Therefore, both AESMH and EESMH can be used for industrial food materials from the results of functional properties.

Expression of MEK1 Fusion Protein in Yeast for Developing Cell Based Assay System, a Major Substrate of LeTx (Yeast내에서 MEK1 융합 단백질 발현 및 Lethal Factor 활성 검증)

  • Hwang, Hye-Hyun;Kim, Joung-Mok;Choi, Kyoung-Jae;Park, Hae-Chul;Han, Sung-Hwan;Chung, Hoe-Il;Koo, Bon-Sung;Park, Joon-Shik;Yoon, Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.195-198
    • /
    • 2006
  • Lethal toxin is a critical virulence factor of anthrax. It is composed two protein: protective antigen (PA) and lethal factor (LF). PA binds to specific cell surface receptors and, forms a membrane channel that mediates entry of LF into the cell. LF is a zinc-dependent metalloprotease, which cleaves MKKs [MAPK (mitogen-activated protein kinase) kinases] at peptide bonds very close to their N-termini. In this study, we suggest application of cell-based assays in the early phase of drug discovery, with a particular focus on the use of yeast cells. We constructed MEK1 expression system in yeast to determine LF activity and approached cell-based assay system to screen inhibitors, in which the results covering the construction of LF-substrate in yeast expression vector, expression, and LF-mediated proteolysis of substrate were described. These results could provided the basic steps in design of cell-based assay system with the high efficiency, rapidly and easy way to screening of inhibitors.

Quality Improvement of Rainbow Trout with Pigments and Enzymatic Hydrolysates of Ascidian (Halocynthia roretzi) Tunic 1. Chemical Specificity of Ascidian Tunic and Its Hydrolysates (우렁쉥이 껍질의 색소 및 효소 가수분해물을 이용한 무지개 송어의 품질 향상 1. 우렁쉥이 껍질 및 효소 가수분해물의 화학적 특성)

  • CHOI Byeong-Dae;KANG Seok-Joong;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.345-356
    • /
    • 1996
  • Properties of enzymatic hydrolysates from ascidian tunic were assessed on supernatant ratio, solid yields and solid concentration. The concentartion of solid and yields in the extracts were increased as the enzyme concentration raised from $100\;{\mu}l\;to\;1000{\mu}l$ during the extraction period. The optima concentration and reaction time of each enzyme on digestion were $400\;{\mu}l$ 60 minutes, through treated with Duncan's multiple test. The percent of yields of solid, protein and carotenoids for 60 minutes extraction at $400\;{\mu}l$ were $32.32\%,\;1.34\%\;and\;74.60\;mg\%$, respectively, in Viscozyme systems. The extracts were composed with many kinds of carbohydrates such as arabinose, ribose, xylose, galactose, glucose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine. Aspartic and glutamic arid were noted as predominant amino acids in all parts. Amino acid profiles of various ascidian tunic part were similiar to each other, but most of essential amino acids content of inter coat was higher than that of root and tunic (body). About sixty six fatty acids components were observed, and their distribution among neutral and polar lipids was compared. The main fatty acids were found to be 14:0, 16:0, 16:1n7, 18:0, 18:1n9, 18:1n7, 18:2n6, 20:5n3, and 22:6n3.

  • PDF