• Title/Summary/Keyword: 단기통 엔진

Search Result 55, Processing Time 0.024 seconds

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Prgress in MEMS Engine Development for MAV Applications (KAIST의 MAV용 MEMS 엔진 개발 현황)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Eui-Sik;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode is formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer from the engine. Combustor size was determined to be 1mn scale. Piston in cylinder moves by fuel injection and reaction. In firing test, adequate engine operation including ignition, flame propagation and piston motion was observed. Present study warrants further application research on MEMS scale internal combustion power units.

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

A Numerical Study on Combustion Characteristics of Single Cylinder Engine Fueled with DME (DME를 사용한 단기통 엔진의 연소특성에 관한 수치해석적 연구)

  • Kim, Hyun-Chul;Kang, Woo;Na, Byung-Chul;Kim, Myung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-48
    • /
    • 2006
  • In this research, in order to study the spray, combustion, and emission characteristics of the common rail DME engine, the target engine was disassembled, and 3D CAD file was constructed using a 3D measurement machine and a rapid prototyping machine. Using the obtained 3D geometry, fine moving meshes are generated, and three dimensional non-steady turbulence flow field and combustion phenomenon including spray were numerically analyzed. As a result, IMEP of DME and diesel in medium and high speed revolution showed similar performance. As the DME fuel start to burn in spray area, the vaporized fuel rapidly spreads squish area in low speed revolution. In the case of DME engine, CO and NOx are relatively consistent with experiment results. It was found that the break-up, evaporation, collision model of DME fuel need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate (단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성)

  • Cho, Sang-Hyun;Oh, Kwang-Chul;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

A Study on the Characteristics of combustion in a combustion chamber by port deactivation valve (PDA 밸브에 의한 연소실내의 연소특성에 관한 연구)

  • 김대열;한영출;조재명;김양술;주신혁;박병완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.242-247
    • /
    • 2003
  • An experimental study presents characteristics of combustion in a combustion chamber by port deactivation valve for economy and emissions standards. In order to use combustion properties data it is necessary to build some data base, which use cylinder pressure sensor, etc. Port deactivation valve has been developed to satisfy requirement of achieving sufficient swirl generation to improve the combustion. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the Coefficient of Variation(COV) and the mass-burned(MFB). The characteristics of pressure ratio fraction is similar to that of mass-burned fraction. Using the results of the test, the effects of the combustion chamber can be improved combustion stability by port deactivation.

  • PDF

A Study on the Steady Flow of Intake Port in Single Cylinder Engine Head (단기통 엔진 헤드에서 흡기포트의 정상유동에 관한 연구)

  • Kim, Dae-Yeol;Choi, Soo-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.13-21
    • /
    • 2007
  • This paper presents characteristics of steady flow by variation of a combustion chamber and an intake port. Gas flow field inside a combustion chamber is the important factor in improving combustion stability and reduction of emission level. The flow characteristics such as flow coefficient, tumble ratio and swirl ratio are measured by the steady flow rig test with an impulse meter in this study. In the measuring, the valve lifts are varied between 1mm to 10mm. The three combustion chambers and two intake ports were applied to the steady flow apparatus in order to investigate the effect of swirl and tumble on the in-cylinder flow. As a result, tumble ratio were found to be different by variation of the combustion chambers and the intake ports. The data from the present study can be applied to design of a similar engine as basic data.

Pressure Variations in Intake and Exhaust Manifold of a Single Cylinder Engine (단기통 엔진의 흡.배기계의 압력 변동에 관한 연구)

  • Choi, Seuk-Cheun;Lee, Young-Hun;Lee, Sang-Chul;Chung, Han-Shik;Lee, Kwang-Young;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.775-780
    • /
    • 2003
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold in a single cylinder engine. To get the boundary conditions for a numerical analysis, one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the exhaust pipe diameters to calculate the pulsating flow when the intake and exhaust valves are working. As the results of numerical analysis, the shapes and distributions of the exhaust pipe pressures were influenced strongly on the cylinder pressure. As the exhaust pipe diameter is decreased, the amplitude of exhaust pressure is large and the cylinder pressure was showed low in the region of intake valve opening time.

  • PDF