최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
현재까지 통행시간 예측과 관련된 다양한 연구들이 수행되었지만, 한국고속도로 특성에 맞는 예측방법론에 대한 실증연구는 부족한 실정이다. 이에 본 연구에서는 실제 통행시간을 기반으로한 DSRC 자료를 바탕으로 한국고속도로에 적절한 예측방법론을 도출한다. 경부고속도로 안성 JC~오산IC 구간의 24시간 DSRC 자료를 이용하며 단주기 통행시간 예측 및 비선형 관계에서 높은 정확도를 보이는 인공신경망 기법을 적용한다. 이어서 랜덤난수를 이용한 통행시간 예측결과의 정확도 검증을 실시한다. 통행시간 예측결과 오차율이 약 4%로 우수한 예측력을 보였으며, 이는 패턴기반 인공신경망 예측시 이력자료의 전처리 과정과 최적의 입력층 및 은닉층의 선정으로 인한 결과로 판단된다. 통행시간 예측결과의 검증을 위해서 랜덤난수를 이용하였으며, 랜덤난수가 이력자료 패턴에 포함되지 않은 경우 실측치와의 오차율이 18.98%로 높게 도출되었다. 이는 인공신경망을 이용한 통행시간 예측시 패턴DB가 예측의 정확도에 주요하게 작용한 결과로 판단된다. 본 연구의 결과를 통해서 한국고속도로 특성에 맞는 통행시간 예측 및 정보제공이 가능할 것으로 판단된다.
4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.
본 연구는 차량검지기 데이터를 이용한 통행시간 추정 및 예측에 관한 수집기법 및 추정·예측기법의 고찰을 통해 고속도로 환경에 적합한 통행시간 추정 및 예측모형을 개발하는 데 목적이 있다. 먼저, 기존 통행시간 추정기법의 고찰을 통해 차량검지기에서 수집되는 교통데이터 중 교통류의 변동을 민감하게 포착할 수 있는 교통량을 이용한 통행시간 추정모형을 정립하고자 하였다. 기존방식인 차량검지기 속도 데이터를 이용한 통행시간과 본 연구에서 제안한 추정모형과의 비교 분석을 위해, 실측치에 거의 근사하는 통행료 징수시스템의 출발지기준 통행시간을 이용하여 통행시간 산출기법의 적용성 평가를 수행한 결과, 고속도로 구간의 혼잡시 본 연구모형에 의한 통행시간 산출방식이 기존방식보다 신뢰성있는 통행시간을 제공할 수 있는 것으로 나타났다. 따라서, 본 연구에서는 고속도로 구간의 차량통과속도가 70km/h이상일 때는 기존 차량검지기 속도데이터를 이용한 통행시간 산출방식을 적용하고 혼잡시에는 교통량을 이용한 추정모형에 의한 통행시간 산출방식을 병용하여 적용하는 것이 타당하다는 결론을 도출하였다. 통계적 모형을 이용한 교통상황의 예측과 보다 정확한 통행시간을 예측하기 위해 본 연구에서 칼만필터를 이용한 단기 예측을 수행해 본 결과, 시시각각 변화하는 고속도로의 교통류에 대해 예측력이 우수한 것으로 판단되었다.
본 연구는 $\circled1$Cellular Automata(이하 CA)모형을 기반으로 대규모 네트워크에 적용 가능한 보다 현실적인 CA차량모형 구축. $\circled2$구축된 CA차량모형을 이용한 차량 모의실험기의 개발과 개발된 차량 모의실험기를 이용한 단기링크통행시간 예측으로 구성된다. 구축된 CA차량추종모형은 기존의 CA차량추종모형 보다 현실적으로 감속을 통한 정지과정을 설명하면서 거시적 지표인 교통량-밀도-속도관계를 설명하였다. 또한 링크의 유출교통량(Outflow)을 제어하기 위한 차량의 링크전이모형은 기존의 차량 링크전이모형에 비하여 보다 안정된 대기차량을 형성하였다. 단기링크통행시간 예측을 위한 차량모의실험기는 대규모 가로망에 적용이 가능하도록 차량묶음(Packet, 이하차량묶음)방식과 링크기반 모의실험방식으로 컴퓨터의 연산 수행속도 및 메모리를 효율적으로 처리할 수 있었으며, 기존의 시계열자료 예측기법에서 고려할 수 없었던 차량의 행태 및 링크 상에서 발생하는 이동류 과포화, 뒷막힘현상 등의 메커니즘을 고려함으로서 기존 시계열자료 예측기법에 비하여 우수한 예측력을 보였다.
본 연구는 유고로 인한 대기행렬, 통행시간과 같은 혼잡정보를 예측하여 제공하는 것을 목표로 하며, 이것은 교통시설 이용자와 운영자 모두에게 효율적인 대안선택 및 운영을 위한 중요한 요소로 활용된다. 이러한 예측된 사고영향 정보의 제공으로 인하여, 이용자는 유고 구간에 대한 정보를 사전에 인지하여 지체를 최소화 할 수 있고, 운영자는 현재 유고영향을 받을 것으로 예상되는 구간을 효율적으로 관리할 수 있을 것이다. 본 연구에서는 연속류 본선구간에서 단기예측기법을 적용한 유고영향 예측모형을 제안하였다. 본 연구에서 제안한 모형은 MARE를 통하여 상대적인 오차를 비교분석하여, 예측력이 뛰어난 모형을 정립하였다. 본 연구를 시작으로 미시적인 사고영향 예측 모형이 개발된다면 사고발생 시 지체를 최소화하고 사회적인 비용을 줄일 수 있을 것이다.
단기 통행속도 예측을 위해 데이터 기반 비모수적 기법들을 활용한 다양한 연구들이 수행되고 있다. 그럼에도 교통신호 및 교차로로 인한 복잡한 동적 특성을 가지는 도시부의 예측 연구는 상대적으로 부족한 실정이다. 본 연구는 도시부 통행 속도를 예측하기 위해 앙상블 경험적 모드 분해법(EEMD)과 인공신경망(ANN)을 이용한 하이브리드 접근법을 제안하는 것을 목적으로 한다. EEMD는 통행속도의 시계열 자료를 고유모드함수(IMF)와 오차항으로 분해한다. 분해된 IMF는 시간단위의 국지적 특성을 반영하며, ANN을 통해 개별적으로 예측된다. IMF는 원본데이터가 가진 비선형성, 비정상성, 진동 등의 복잡성을 완화하기 때문에, 원래의 통행속도에 비하여 더 정확하게 예측될 수 있다. 예측된 IMF들은 합산되어 예측 통행속도를 표현한다. 본 연구에서 제시된 방법을 검증하기 위하여 대구시의 DSRC로부터 구득된 통행속도 데이터가 활용된다. 성능평가는 도시부 링크 중 특히 예측이 어려운 지점에 대해 수행되었으며, 분석 결과 제시된 모형은 15분 후 예측에 대해 각각 평상시 10.41%, 와해상태시 25.35%의 오차율을 가지며, 단순 ANN 기법에 비하여 우수한 성능을 보이는 것으로 확인된다. 본 연구에서 개발된 모형은 도시교통관리체계의 신뢰성 있는 교통정보를 제공하는 데에 기여할 수 있을 것으로 기대된다.
최근 국내에서는 대도시권의 교통혼잡 완화를 위하여 다양한 대중교통 활성화 정책을 시행중에 있다. 특히 대도시권역에서는 버스정보시스템이 도입되어 버스의 현재위치, 도착예정시간 등에 대한 정보를 제공하고 있다. 하지만 복잡한 도시부를 지나는 버스들의 경우 반복적인 교통혼잡과 버스몰림으로 인하여 정확한 통행시간 정보제공 시 정확도를 확보하는데 어려움이 있다. 기존 버스 통행시간 연구는 링크별 소통정보 제공방식으로 인하여 버스 이용자의 경로 통행시간 정보 제공 시 어려움이 있고, 데이터 기반의 단기 통행방식으로 중장기 정보 제공이 어렵다는 한계가 있다. 이에 본 연구에서는 경로기반의 중장기 버스통행시간 예측 방법론에 대한 연구를 실시한다. 이를 위하여 2015년 버스통행정보로 학습데이터, 2016년 자료로 검증데이터를 구성하였다. 학습데이터를 이용하여 버스통행정보를 분석하여 버스통행시간에 영향을 미치는 요인들을 출발시각, 요일, 그리고 기상요인 등으로 분류하고, 이들의 특성 값을 자기조직화지도를 활용하여 비슷한 통행 패턴을 가지는 군집으로 분류하였다. 도출된 군집들을 바탕으로 맑음과 우천시에 대한 요일/출발시각 별 버스통행시간 참조 테이블을 구성하였다. 검증데이터를 이용하여 본 연구에서 도출한 버스통행시간의 정확도를 검증하였다. 본 연구의 중장기 예측 알고리즘을 활용하여 기존의 직관적이고 경험적인 접근법의 한계를 극복할 수 있으며, 예측의 정확도 개선을 통한 버스이용자 만족도 향상 및 탄력적인 대중교통 정책 수립이 가능할 것으로 판단된다.
VMS를 통한 정보제공에는 과도반응과 통행집중의 위험부담이 따른다. 즉 대안경로간에 이루어져야 할 통행배분을 정확히 유도할 수 있는 VMS 메시지란 존재치 않는다. VMS 메시지에 의해 특정 경로가 교통상황이 타 경로에 비해 좋다고 정보가 주어질 때, 그 정보에 대한 과도반응과 그 특정경로에 대한 통행집중 문제가 발생하여 정보제공에 의해 오히려 상황이 악화될 수 있다. 본 연구에서는 대안경로간의 물리적 특성 측면에서 우열이 있는 가상 네트워크를 대상으로 하여, 과도반응과 통행집중 문제를 극복하고 대안경로간의 적절한 통행배분을 달성하기 위한 VMS 운영알고리즘을 개발하는 것을 목표로 한다. VMS정보제공 결과, 즉 VMS를 통해 상황이 좋다고 알려준 경로에 통행이 집중할 경우 문제가 될 것인가 여부를 미리 예측해 보고, 문제가 될 경우 정보제공 전략을 수정하도록 하는, 피드백 제어에 예측적 방식을 접목하였다. 본 연구에서 제안한 알고리즘의 주요 기능은 다음과 같다. 1. 교통량, 속도 등에 대한 실시간 모니터링 시스템이 구축되어 있음을 전제로 한다. 2. 실시간 제어에는 모니터링 결과와 이에 근거한 정보제공전략의 시행사이에는 시간차가 존재한다. 이러한 시간차이로 인하여 단기예측이 필요하고, 이를 수행하는 모듈이 있다. 3. 정보제공 결과로 특정 경로에 과부하가 걸리는지 여부를 예측하기 위하여, 그 판단기준으로 그 경로의 실제 용량 산정이 필요하다. 이에 혼잡의 시공간적 전개에 따라 변하는 동적 용량을 산정하는 모듈이 있다. 4. 대안 경로간 통행배분 목표치를 수리적으로 산정할 수는 있으나, 이를 자동적으로 이루어 주는 메시지는 존재하지 않는다. 아울러 현실적으로 예측 불가능한 외란을 모형에 의존하여 예측하기 보다는, 계속적인 피드백 레귤레이터(Regulator) 작동에 의해 보정하여 목표를 달성해 가는 자동제어 기능을 갖고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.