• Title/Summary/Keyword: 다축하중

Search Result 47, Processing Time 0.023 seconds

General Response for Lateral-Torsional Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡-비틀림 좌굴의 일반적 응답에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.119-132
    • /
    • 1992
  • The objective of this study is to perform extensive parametric studies of the lateral-torsional buckling of short 1-beams under repeated loadings, and to gain a further insight into the lateral-torsional beam buckling problem. A one-dimensional geometrically (fully) nonlinear beam model is used, which includes superposed infinitesimal transverse warping deformation in addition to finite torsional warping deformation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm. The general response for the lateral-torsional buckling of short I-beams under repeated loadings is examined through several parametric studies around the standard case : the material yield strength, the yield plateau, the strain hardening, the kinematic hardening, the residual stresses, the load eccentricity with respect to the shear center, the height of the load with respect to the cross-section of the beam, the location of the load along the length of the beam, the dimensions of the cross-section of the beam and the fixity of the supported end remote from the load.

  • PDF

Facture Behavior Analysis of Box Culvert Specimen Using Non-local Damage Model (비국소 손상모델을 이용한 전력구 모형 실험체의 파괴거동 해석)

  • Kwon, Yong-Gil;Woo, Sang-Kyun;Han, Sang-Hoon;Song, Young-Cheul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.225-228
    • /
    • 2008
  • In case of nonlinear analysis for reinforced concrete structure, the characteristics of the failure, which are depend on loading conditions, such as tension splitting, compression crushing and shear distortion should be considered. On the analytical evaluation for the failure behavior of these, the finite element techniques is the most widely used. After the maximum load, however, an analytical results by finite element technique are depending on the size of the element. In this study, integral nonlocal model which is one of those study for overcoming the element sensitivity and dependancy, used for the failure analysis of box culvert specimen. Comparing on the experimental and analytical results, validity and reliability of integral nonlocal model are investigate.

  • PDF

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Durability Analysis of Welding Bogie Frames for Rolling Stocks According to EN Standard (EN규격에 준한 철도차량 용접대차프레임 내구성 해석)

  • Kim, C.S.;Ahn, S.H.;Chung, K.W.;Park, C.S.;Kim, S.S.;Jang, C.S.
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.832-835
    • /
    • 2011
  • 최근까지 용접구조물의 피로설계는 용접품질 수준에 따라 공칭응력 또는 핫스팟 응력에 의한 S-N선 도로부터 수행하였다. 본 연구에서는 유한요소망의 크기에 덜 민감하면서 기존의 하중모드형식, 두께 효과 및 용접결합형식에 상관없는 등가구조응력(E2S2) 접근법을 이용한 Master S-N선도로부터 철도차량 대차프레임의 피로수명을 평가하고자 한다. 또한 합리적인 철도차량 용접대차프레임의 피로해석 연구일환으로서, 다축피로조건인 EN규격의 피로시험조건하에 이의 피로수명을 평가하고자 한다.

  • PDF

Development of Force-Based Fiber Frame Finite Element for FRP Concrete Members with Multi-axial Behaviors (다축거동을 고려한 FRP 콘크리트 부재의 층상화 하중-기초 유한요소모델 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Park, Moon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.78-81
    • /
    • 2006
  • In the current study, a force-based fiber frame finite element model of FRP concrete structural members has been developed. For compressive behaviors of confined concrete wrapped by FRP jackets, the multiaxial behavior of concrete has been considered with the equivalent tangent modulus of concrete. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimensional stress states. The force-based finite element formulation is based on the force-interpolation functions within the element without using the displacement shape functions to satisfy the equilibrium in element levels.

  • PDF

Fatigue Life Assessment of Journal Box Attached to Bogie under Multiaxial Random Dynamic Loading (다축 Random Dynamic 하중을 받는 대차 저널박스의 피로수명평가)

  • Park, Sang-Goo;Kim, Seung-Seob;Han, Sung-Wook;Park, Geun-Su;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1125-1131
    • /
    • 2009
  • This paper presents the evaluation of fatigue life for a journal box attached to rolling stock bogie under random dynamic loading condition. Because a journal box was under random dynamic loading conditions, the fatigue life assessment due to these loads requires the analysis considering the multiaxial effect of random dynamic loading. To do this work, the finite element analysis has been conducted to calculate random dynamic response using multiaxial acceleration data. Then, the fatigue life assessment of component has been conducted using vibration fatigue analysis applying the power spectral densities of the responses obtained through the FEA The results of fatigue life assessment were compared to the damage from the strain measurement. This study shows that can be evaluated the fatigue life assessment considering real service condition about a component attached to rolling stock bogie.

  • PDF

Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle (고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석)

  • Jin, Jae-Hyun;Na, Hong-Cheoul;Jeon, Seung-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

Stress Analysis of Mechanically Fastened Joints in MWK Composite Laminate with Different Geometric :Factors and Loading Conditions (다축경편 복합재료 평판의 기계적 체결시 기하학적 형상 및 하중조건에 다른 응력해석)

  • Choi J.-M.;Jo M.-G.;Chun H.-J.;Byun J.-H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.246-249
    • /
    • 2004
  • When MWK (Multiaxial Warp Knitted Fabric) composites are applied for the structures, the connections of each component using mechanical fastening is needed. The local contact between the bolted joint and the composite laminates may induce high stress concentration or breakdown in the laminates for the mechanical joints. There for, it is strongly required to study the characteristics of mechanically joints of MWK composite laminates. In this study, stress analysis near the hole boundary of MWK composite laminate is conducted with various geometric factors under different loadings. In the case of multi-pin loaded MWK composite laminates, the results show that the types of loadings and geometric factors of mechanical joints have a significant influence on the joint performances.

  • PDF

A Study on the Structural Strength Assessment of FRP Composites Boat (FRP 복합재료 선박의 구조강도 평가에 관한 연구)

  • Choi, Han-Kyu;Kwon, Soo-Yeon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.28
    • /
    • pp.46-63
    • /
    • 2010
  • 플레저보트의 고강도 및 경량화 추세에 따라 복합재료 등 관련 소재의 경량화가 요구되었고, 이에 부응하여 관련 신소재 개발과 진공성형 신건조공법 등이 출현하였으며, 이러한 신공법을 이용한 선박건조가 증가하고 있는 실정에 따라 선박의 구조강도 평가가 중요한 과제로 부각되고 있다. 또한 선박의 안전성 확보와 고객의 편리 도모를 위한 플레저보트 구조강도 확인을 위한 시험방법 등도 다양화할 필요가 있다. 따라서 진공적층 및 수적층 성형방법으로 건조한 플레저보트를 대상으로 선체구조 강도 시험 결과를 비교 분석하여 우리 실정에 적합하고 플레저보트의 안정성 평가를 위한 선체구조 강도 시험 기준안을 제시하고자 한다.

  • PDF

Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading (다축하중이 작용하는 방진고무부품 피로손상 파라미터 결정에 관한 연구)

  • Moon, Seong-In;Woo, Chang-Su;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. In order to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and strain energy density was proposed as the fatigue damage parameter for rubber components. The fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed.