• Title/Summary/Keyword: 다중벽탄소 나노 튜브

Search Result 210, Processing Time 0.031 seconds

MWCNT의 플라즈마에 의한 산소기능화 연구

  • Jeong, Man-Gi;Kim, Byeong-Yeon;Kim, Seong-In;Song, Seok-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.141.1-141.1
    • /
    • 2015
  • 탄소나노튜브는 우수한 전기적 특성과 더불어 열전도도, 강도, 높은 화학적 안정성, 바이오 물질과의 친화성 때문에 많은 응용이 가능하며 최근까지도 활발히 연구되는 대표적인 탄소질의 물질이다. 이러한 다중 벽 탄소나노튜브를 제품화시키기 위해서는 특정 용매에서 용이한 분산성을 지닐 수 있도록 기능화 공정이 필수적이고 많은 양의 파우더를 기능화 시킬 수 있는 장비의 구조 및 공정개선이 요구된다. 플라즈마 기술을 이용한 건식의 순환형 나노분산 파우더 플라즈마 반복처리장치를 통하여 기능화 처리된 탄소나노튜브를 습식공정에 비해 간편한 공정으로 재현성 있고 균일한 결과로 많은 양의 확보가 가능하다. 이에 탄소나노튜브의 기능화 결과를 제시함으로써 본 장비를 소개하고자 한다.

  • PDF

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Fabrication of Nano-bridge Using a Suspended Multi-Wall Carbon Nanotube (다중벽 탄소나노튜브를 이용한 나노 브리지 제작)

  • Lee, Jong-Hong;Won, Moon-Cheol;Seo, Hee-Won;Song, Jin-Woo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.134-139
    • /
    • 2007
  • We report the suspension of individual multi-walled carbon nanotubes (MWNTs) from the bottom substrate using deep trench electrodes that were fabricated using optical lithography. During drying of the solution in dielectrophoretic assembly, the capillary force pulls the MWNT toward the bottom substrate, and it then remains as a deformed structure adhering to the bottom substrate after the solution has dried out. Small-diameter MWNTs cannot be suspended using thin electrodes with large gaps, but large-diameter MWNTs can be suspended using thicker electrodes. We present the statistical experimental results for successful suspension, as well as the feasible conditions for a MWNT suspension based on a theoretical approach.

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

탄소나노튜브 나노유체의 파울링 현상에 따른 열적 특성에 대한 연구

  • Mun, Ji-Eun;Kim, Yeong-Hun;Kim, Nam-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.383.1-383.1
    • /
    • 2016
  • 열전달 시스템에서 임계 열유속 발생 시 시스템의 물리적 손상을 야기하기 때문에 비등 열전달에서 임계 열유속은 열전달 시스템의 한계 또는 안전성을 나타낸다. 따라서 열전달 시스템의 안정성을 위해서는 임계 열유속 향상이 필수적이다. 최근에는 나노유체를 열전달 시스템에 적용할 경우 임계 열유속이 증가한다고 보고되었다. 하지만 나노유체는 원전 및 각종 열전달 시스템에 적용 시 나노입자가 열전달 표면에 침착되는 파울링 현상을 발생시킬 수 있으며, 이 때문에 시스템의 열효율이 크게 감소할 수 있다. 따라서 본 연구에서는 열전달 시스템에 나노유체를 적용했을 때, 나노유체의 침착현상이 시스템에 미치는 영향을 분석하였다. 그 결과 유속과 코팅시간이 증가할수록 산화처리된 다중벽 탄소나노튜브 나노유체의 임계 열유속이 크게 증가하고 있음을 확인할 수 있다. 하지만 나노입자 침착정도와 유속이 증가할수록 비등 열전달 표면과 유체의 포화온도의 차이인 과열도가 상당히 크게 증가함을 알 수 있었으며, 열전달 계수는 순수 물의 0 m/s의 비등 열전달 계수와 비교하면 감소하는 것을 확인하였다.

  • PDF

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Synthesis of vertically aligned thin multi-walled carbon nanotubes on silicon substrates using catalytic chemical vapor deposition and their field emission properties (촉매 화학 기상 증착법을 사용하여 실리콘 기판위에 수직 정렬된 직경이 얇은 다중층 탄소나노튜브의 합성과 그들의 전계방출 특성)

  • Jung, S.I.;Choi, S.K.;Lee, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • We have succeeded in synthesizing vertically aligned thin multi-walled carbon nanotubes (VA thin-MWCNTs) by a catalytic chemical vapor deposition (CCVD) method onto Fe/Al thin film deposited on a Si wafers using an optimum amount of hydrogen sulfide ($H_2S$) additive. Scanning electron microscope (SEM) images revealed that the as-synthesized CNT arrays were vertically well-oriented perpendicular to the substrate with relatively uniform length. Transmission electron microscope (TEM) observations indicated that the as-grown CNTs were nearly catalyst-free thin-MWCNTs with small outer diameters of less than 10nm. The average wall number is about 5. We suggested a possible growth mechanism of the VA thin-MWCNT arrays. The VA thin-MWCNTs showed a low turn-on electric field of about $1.1\;V/{\mu}m$ at a current density of $0.1\;{\mu}A/cm^2$ and a high emission current density about $2.5\;mA/cm^2$ at a bias field of $2.7\;V/{\mu}m$. Moreover, the VA thin-MWCNTs presented better field emission stability without degradation over 20 hours (h) at the emission current density of about $1\;mA/cm^2$.

Influence of Mg nanoparticles on Hydrogen Adsorption Behaviors of Multi-walled Carbon Nanotubes (다중벽 탄소나노튜브의 수소 흡착 거동에 대한 Mg 나노입자의 영향)

  • Yoo, Hye-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.160-160
    • /
    • 2011
  • In this work, magnesium (Mg) nanoparticles were plated onto the surfaces of multi-walled carbon nanotubes (MWNTs) in order to investigate the effects of their presence on the high pressure hydrogen storage behaviors of the resultant Mg/MWNTs. The structure of Mg/MWNTs was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The pore structure and total pore volumes of Mg/MWNTs were analyzed by $N_2$/77 K adsorption isotherms. The hydrogen storage behaviors of the Mg/MWNTs were investigated by BEL-HP at 298K and 100 bar. From the results, it was found that Mg particles were homogeneously distributed on the MWNT surfaces. The hydrogen storage capacity increased in proportion to the Mg content. It can be concluded that Mg paricles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect.

  • PDF

Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes (다중벽 탄소나노튜브를 이용한 공진기 제작)

  • Lee J.H.;Seo H.W.;Song J.W.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF