• Title/Summary/Keyword: 다이폴 안테나

Search Result 308, Processing Time 0.027 seconds

Analysis of a Dipole Antenna Using Maxwell-SCHRÖDINGER Equation (맥스웰-슈뢰딩거 방정식을 이용한 다이폴 안테나 해석)

  • Kim, Jinyoung;Jung, Jaeyoung;Jung, Youngbae;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3107-3113
    • /
    • 2014
  • We present a quantitative analysis of a dipole antenna and its characteristics from the viewpoint of quantum mechanics. The method makes use of a Maxwell equation used in an existing antenna propagation formula. This includes radiation resistance, input reactance, and antenna efficiency as functions of frequency and antenna length. Particular attention is paid to the Schr$\ddot{o}$odinger equation. We accomplish E-field and H-field analyses of a dipole antenna by combining the Maxwell and Schr$\ddot{o}$odinger wave equations. When comparing the existing Maxwell wave equation with the Schr$\ddot{o}$odinger wave equation, quantum-electric movement is more accurate than using the Maxwell wave equation alone.

Analysis of Dielectric Coated Electromagnetically Coupled Coaxial Dipole Array (ECCDA) Antenna (유전체가 입혀진 전자기 결합 동축 다이폴 어레이 안테나의 해석)

  • Koo Sung-Mo;Yiug Woo-Suk;Lee Chang-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • Electromagnetically coupled coaxial dipole (ECCD) array antenna with and without short-ended termination is investigated theoretically. The integral equations are derived for the structure by use of the Fourier transform and mode expansion of radial waveguide. The integrals appearing in the integral equations are evaluated along the branch cut instead of real axis for a faster convergent integral. The effects of slots and dipoles, short-ended termination length, and dielectric coating on the radiation characteristics are presented. Radiation pattern of the structure is also investigated. The results of the present method are compared with those of the commercial EM simulator and good agreement is found.

  • PDF

Broadband Dual Polarization Dipole Antenna with Feeding Structure of PCB Coupling (PCB 결합 급전구조를 가지는 광대역 이중편파 다이폴 안테나)

  • Park, Chul-Keun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • This paper proposed a method of broadband method of dual polarized dipole antenna for 700 MHz band base station. The proposed antenna has a structure that PCB feeder is mounted on the metallic radiator. The design of radiator and feeder is optimized by using 3D EM simulation. The proposed antenna(bandwidth 31.6 %) is broadened over 12.2 % through the lower frequency band than reference antenna(bandwidth 19.4 %), however the size is not increased. Measured results of S-parameters, radiation patterns, and gain have a good agreement with simulation ones.

Design and Fabrication of the GPS Receiving Antenna using Hilbert Curve Fractal Structure (힐버트 커브 프랙탈 구조를 이용한 GPS 수신 안테나 설계 및 제작)

  • Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.125-129
    • /
    • 2014
  • In this paper, design and fabrication of the GPS receiving antenna using Hilbert curve fractal structure was proposed. The size of the antenna was miniaturized by transforming dipole structure into monopole structure because its size increases if Hilbert curve fractal dipole structure is used. To use a Hilbert curve structure, the current directions of the radiator were made oppositely each other. The size of the antenna is $10{\times}10{\times}0.8[mm]$, the line width is 0.25[mm]. The resonant frequency is 1.58[GHz] and its range is 1.52[GHz] ~ 1.65[GHz]. Frequency bandwidth is 130[MHz]. Antenna maximum gain is 3.09[dBi].

소형 펄스 안테나를 위한 분포저항 장하 기법과 특성 분석

  • 강병구;전상재;박의준
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • 광대역 스펙트럼을 갖는 신호의 송, 수신을 위한 안테나는 분산 및 단부(end points)에서의 전류 반사가 최소로 되어야 한다. 이를 위해 안테나 상에 저항을 적절히 분포시키는 방법을 소개하고, 그 방법을 사용한 대표적인 펄스 송, 수신안테나의 특성을 살펴보고자 한다. 그리고 비선형적으로 분포된 저항을 갖는 다이폴 안테나의 ps 전자기 펄스 송, 수신 특성을 펄스폭, 안테나 길이와 형상 등을 변수로 하여 시간영역 해석을 통해 엄격히 분석한다.

Analysis of AMC Characteristics According to Material Constants and Correlation of Dipole Antenna (유전율 및 투자율에 따른 인공자계도체 특성 및 다이폴 안테나 간 상관관계 분석)

  • Lee, Donghyun;Min, Taehong;Lee, Jongmoo
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • In this paper, we theoretically examine the characteristics of an Artificial Magnetic Conductor (AMC) constructed of a perfect electric conductor and a normal material having permittivity εr, permeability μr, and thickness L. First, we derived rigorous equations to describe the infinite AMC structure. Then, we studied how the AMC's characteristics are affected by changes in εr, μr and L. The operating center frequency exhibiting a 0° reflection coefficient phase occurs when L is one quarter of a guide wavelength. Therefore, the AMC thickness can be reduced by using a material having a high product of εr and μr. As the ratio μrr increases, the bandwidth of the AMC increases (maximum value: 200 %), and its operating frequency decreases. We also find out he bandwidth of the AMC is improved by introducing a loss in the material. To validate the AMC, we design a dipole antenna on the AMC and demonstrate a relationship between AMC phase and dipole antenna's operating frequency by investigating the dipole on the AMC with different pairs of εr and μr.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Dipole-type Antenna for Measuring Human Radiometric Signals (인체 방사파 측정용 다이폴형 안테나)

  • Shin Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1347-1351
    • /
    • 2006
  • Microwave radiometry, as a non-invasive technique which doesn't pierce inside human and can measure the temperature, is to diagnose early the disease or abnormality by measuring the temperature inside human. In this paper, as an antenna for measuring human radiometric signals, we simulated and measured a dipole-type antenna with circular loops. As a measured result has a ultra wideband characteristic of $130%(0.8\sim3.8GHz)\;for\;511\leq-10dB$, it is considered to be suitable to detect the position and size of human tissue having various diseases.

The Resistance Characteristics of the Microwave Dipole Antenna (마이크로파 다이폴 안테나의 저항특성)

  • 양인용;이상설
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.4
    • /
    • pp.5-15
    • /
    • 1966
  • The real part of the impedance of dipole antenna is computed rigorously instead of solving a boundary value problem of a partial differential equation. In this paper the resistance of the dipole antennas, whose shape was determined from an ordinary differential equation of first order and the length 2h is in the limits of , were computed and measured. The frequency used was 1500MC and the image screen, 93$\times$93$\textrm{cm}^2$ rectangular aluminium plate, was used for the measurements. The measured resistance was consistent with the theoretical result.

  • PDF

A Super-Wideband Dipole Antenna With a Self-Complementary Structure (자기상보 구조를 갖는 초광대역 다이폴 안테나)

  • Park, Won Bin;Kwon, Oh Heon;Lee, Sungwoo;Lee, Jong Min;Park, Young Mi;Hwang, Keum Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1414-1416
    • /
    • 2016
  • In this paper, a SWB (Super-WideBand) dipole antenna with self-complementary structure is proposed for signal intelligence. The proposed antenna consists of a self-complementary dipole antenna and a tapered balun for balanced feeding. The measured -10 dB reflection bandwidth of the proposed antenna is more than 28:1 (0.73-20 GHz) and 3 dB axial ratio bandwidth is 3.25:1 (1.91-6.22 GHz) with RHCP (Right Hand Circular Polarization) at +z direction. The measured radiation patterns are omni-directional in lower frequency band and bi-directional in higher frequency band. The measured peak gain within -10 dB reflection bandwidth varies from 2.83 dBi to 7.66 dBi.