DOI QR코드

DOI QR Code

유전율 및 투자율에 따른 인공자계도체 특성 및 다이폴 안테나 간 상관관계 분석

Analysis of AMC Characteristics According to Material Constants and Correlation of Dipole Antenna

  • 투고 : 2019.06.17
  • 심사 : 2020.01.02
  • 발행 : 2020.03.31

초록

이 논문에서는 도체 위 물질의 유전율 투자율에 따른 인공자계도체 특성을 이론적으로 고찰하고 이 인공자계도체 위에 다이폴 안테나화의 상관관계를 규명했다. 먼저 도체 위 물질이 인공자계도체로 동작하는 주파수 및 대역폭을 수식으로 유도하고, 이를 통해 유전율(εr), 투자율(μr), 그리고 물질 두께(L)가 인공자계도체의 특성에 어떤 영향이 있는지 분석했다. 물질 두께가 λ/4가 되는 주파수에서 반사계수 위상이 0°이 되므로 높은 유전율과 투자율을 가지는 물질로 인공자계도체 설계 시 두께를 줄일 수 있고, 'μrr' 값이 커질수록 인공자계도체 동작 대역폭은 증가(최대 200%)하며, 동작 주파수는 낮아지는 것을 밝혀냈다. 또한 물질의 손실이 존재하면 인공자계도체의 대역폭이 증가하는 것을 확인했다. 인공자계도체 위에 다이폴 안테나를 설계하고 유전율과 투자율을 변경하면서 인공자계도체 표면 반사 위상과 다이폴 안테나의 동작 주파수를 관계를 시뮬레이션을 통해 규명하였다.

In this paper, we theoretically examine the characteristics of an Artificial Magnetic Conductor (AMC) constructed of a perfect electric conductor and a normal material having permittivity εr, permeability μr, and thickness L. First, we derived rigorous equations to describe the infinite AMC structure. Then, we studied how the AMC's characteristics are affected by changes in εr, μr and L. The operating center frequency exhibiting a 0° reflection coefficient phase occurs when L is one quarter of a guide wavelength. Therefore, the AMC thickness can be reduced by using a material having a high product of εr and μr. As the ratio μrr increases, the bandwidth of the AMC increases (maximum value: 200 %), and its operating frequency decreases. We also find out he bandwidth of the AMC is improved by introducing a loss in the material. To validate the AMC, we design a dipole antenna on the AMC and demonstrate a relationship between AMC phase and dipole antenna's operating frequency by investigating the dipole on the AMC with different pairs of εr and μr.

키워드

참고문헌

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ${\varepsilon}$ and ${\mu}$," Sov. Phys. Usp., vol.10, no.4, pp.509-514, 1968. https://doi.org/10.1070/PU1968v010n04ABEH003699
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S.Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., vol.84, p.4184, 2000. https://doi.org/10.1103/PhysRevLett.84.4184
  3. R. A. Shelby,D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol.292, no.5514, pp.77-79, Apr. 6, 2001. https://doi.org/10.1126/science.1058847
  4. C. Caloz, C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left handed materials in waveguide configurations," J. Appl. Phys., vol.90, no.11, pp.5483-5486, Dec. 2001. https://doi.org/10.1063/1.1408261
  5. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E.Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., vol. 47, pp.2059-2074, Nov.1999 https://doi.org/10.1109/22.798001
  6. A. Erentok, P. Luljak, and R. W. Ziolkowski, "Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor," IEEE Trans. Antennas Propag., vol.53, no.1, pp. 160-172, Jan. 2005. https://doi.org/10.1109/TAP.2004.840534
  7. R. Liu, Y. Qin, F. Li, L. Wu, and Y. Chi, "AMC surface based on spiral strips and its applications for low-profile broadband planar antennas," IET Microw. Antennas Propag., vol.13, Iss.3, pp.326-333, 2018. https://doi.org/10.1049/iet-map.2018.5489
  8. M. Fujii, Y. Inuzuka, and K. Watanabe, "Novel Subwavelength Magnetic Conductor Surface of Lumped Element Electrical Network," IEEE Microw. and Wireless Components Letters, Vol.29, No.9, 2019.
  9. S. Yan, P. J. Soh, and G. A. E. Vandenbosch, "Lowprofile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., vol.62, no.12, pp.6487-6490, Dec. 2014. https://doi.org/10.1109/TAP.2014.2359194
  10. M. Mantash, A.-C. Tarot, S. Collardey, and K. Mahdjoubi, "Design methodology for wearable antenna on artificial magnetic conductor using stretch conductive fabric," Electron. Lett., vol.52, no.2, pp.95-96, Jan. 2016. https://doi.org/10.1049/el.2015.3135
  11. A. Alemaryeen, and Sima Noghanian, "On-Body Low-Profile Textile Antenna With Artificial Magnetic Conductor," IEEE Trans. Antennas Propag., vol.67, no.6, pp.3649-3656, JUN. 2019 https://doi.org/10.1109/tap.2019.2902632
  12. L. Yousefi. B. M. Iravani, and O. M. Ramahi, "Enhanced Bandwidth Artificial Magnetic Ground Plane for Low-Profile Antennas," IEEE Antennas and Wireless Propagat. Lett., vol.6, pp.289-292, Jun. 2003.
  13. A. Jafargholi, M. Kamyab, and M. Veysi, "Artificial Magnetic Conductor Loaded Monopole Antenna," IEEE Trans., Antennas Propagat., vol.9, pp.211-214, 2010. https://doi.org/10.1109/LAWP.2010.2046008
  14. K. Agarwal, Nasimuddin, and A. Alphones. "Wideband circularly polarized AMC reflector backed aperture antenna", IEEE Trans. Antennas Propag., 2013, 61,(3), pp. 1456-1461 https://doi.org/10.1109/TAP.2012.2227446
  15. Feng, D., Zhai, H., Xi, L., et al.: 'A broadband low-profile circular-polarized antenna on an AMC reflector', IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp.2840-2843 https://doi.org/10.1109/LAWP.2017.2749246
  16. F. Yang, and Y. Rahmat-Samii, "Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Applications," IEEE Trans., Antennas Propagat., vol.51, pp. 2691-2703, Oct. 2003. https://doi.org/10.1109/TAP.2003.817559