• Title/Summary/Keyword: 다방향불규칙파

Search Result 47, Processing Time 0.023 seconds

Reliability Analysis of the Long Caisson Breakwater Considering to the Wave Force Reduction Parameter (파력감소계수를 고려한 장대케이슨 방파제의 신뢰성해석)

  • Lee, Gee Nam;Park, Woo Sun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2017
  • The actual wave is multi-direction irregular wave. In the case of a long structure, a reduction effect of the wave occurs. In this study, in order to grasp the extent to which these influences contribute to the failure probability and compare the existing modular breakwaters to the stability, we used existing modular breakwaters and long caisson breakwaters using wave force reduction parameter to analysis the reliability. As a result, the reliability index of the long caisson breakwater was higher than that of the existing modular caisson breakwater, and it was confirmed that the significant wave height of the design variables had the highest influence. In addition, the reliability analysis was performed according to the change of the mean value of the variables used in the calculation of the wave force reduction parameter. It is confirmed that the relationship between each variable value and the wave force reduction parameter appears in the analysis results.

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Boussinesq Modeling of a Rip Current at Haeundae Beach (Boussinesq 방정식 모형을 이용한 해운대 이안류 수치모의)

  • Choi, Jun-Woo;Park, Won-Kyung;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.276-284
    • /
    • 2011
  • The rip current occurred at Haeundae beach was numerically investigated under directional random wave environment. The numerical simulation was performed using a fully nonlinear Boussinesq equation model, FUNWAVE which is capable of simulating nearshore circulation since it includes the effect of wave-induced momentum flux and horizontal turbulent mixing. The results of numerical simulation show the time-dependent evolution of the wave-induced nearshore circulation system (including rip current) that are caused by nonlinear transformation of directional irregular waves due to unique topography of Haeundae. From the results, it was found that rip current is well generated and developed where relatively lower wave height and relatively deeper water depth along the longshore direction, and sudden and strong events of rip current were observed.

The Multidirectional Random Wave Diffraction in a Partial-Reflecting Harbor due to a Submarine Pit (Pit에 의한 부분반사율을 갖는 항내에서의 다방향 불규칙 파랑회절에 관한 연구)

  • Kim, Sung-Duk;Lee, Hong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.291-299
    • /
    • 2008
  • The present study is to estimate the effects of diffracted wave fields in a harbor and around harborentrance due to random waves, when a navigation channel is dredged in the vicinity of the a harbor entrance. The cross sections of harbor boundary are considered to be partial or full reflection in this study. The numerical simulation has been performed by the boundary element method, which is to discrete segments of pit- and harbor- boundary with the algorism of auto generated elements. The incident wave conditions are specified using discretized forms of the Mitsuyasu's frequency spectrum and directional function. The results of the present numerical simulation agreed well with those of the published experimental data. It is shown that the ratios of wave height reduction are about 20% for the case of fully reflecting boundary, and 10% for the case of partially reflecting boundary by the effect of placing a pit, respectively.

A Simulation of Directional Irregular Waves at Chagui-Do Sea Area in Jeju Using the Boussinesq Wave Model (Boussinesq 모델을 이용한 제주 차귀도 해역의 다방향 불규칙파 시뮬레이션)

  • Ryu, Hwang-Jin;Shin, Seung-Ho;Hong, Key-Yong;Hong, Seok-Won;Kim, Do-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.7-17
    • /
    • 2007
  • Based on the Boussinesq wave model, the wave distribution in the Chagui-Do sea area in Jeju was simulated by applying the directional irregular waves at an incident boundary. The time and spatial variations of monthly mean wave height and period were investigated, which aims to provide basic information on optimal sites for wave power generation. The grid size and time interval of the Boussinesq wave model were validated by examining wave distributions around a surface piercing wall, fixed at sea bottom with a constant slope. Except for the summer season, the significant wave height is dominated by wind waves and appears to be relatively high at the north sea of Chagui-Do, which is open to the ocean, while it is remarkably reduced at the rear sea of Chagui-Do because of its blocking effect on incident waves. In the summer, the significant wave height is higher at the south sea, and it is dominated by the swell waves, which is contributed by the strong south-west wind. The magnitude of significant wave height is the largest in the winter and the lowest in the spring. Annual average of the significant wave height is distinctively high at the west sea close to the Chagui-Do coast, due to a steep variation of water depth and corresponding wave focusing effect. The seasonal and spatial distribution of the wave period around Chagui-Do sea reveals very similar characteristics to the significant wave height. It is suggested that the west sea close to the Chagui-Do coast is the mast promising site for wave power generation.

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Wave Exciting Forces on Multiple Floating Bodies of Semisubmersible Type in Multi-directional Irregular Waves (다방향 불규칙파중에서의 반잠수식 부체군에 작용하는 파강제력)

  • 조효제;구자삼;김경태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.76-89
    • /
    • 1997
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined to present the basic data for the design of huge offshore structures supported by a large number of the floating bodies in multi-directional irregular waves. The numerical approach is based on a combination of a three-dimensional source distribution method, the wave interaction theory and the spectral analysis method. The effects of wave directionality on the wave exciting forces acting on multiple floating bodies in multi-directional irregular waves also have been pointed out.

  • PDF

Prediction of Wave Force on a Long Structure of Semi-infinite Breakwater Type Considering Diffraction (회절을 고려한 반무한방파제 형식의 장대구조물에 작용하는 파력 예측)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.424-433
    • /
    • 2015
  • In this study, the wave force distribution acting on a semi-infinite and vertical-type long structure is investigated considering diffraction. An analytical solution of the wave force acting on long structures is also suggested in this study. The wave forces on long structures are evaluated for monochromatic, uni-directional random, and multi-directional random waves. Diffraction effects in front of the breakwater and on the lee side of the breakwater are considered. The wave force on a long structure becomes zero when the relative length of the breakwater (1/L) is zero. The diffraction effects are relatively strong when the relative length of the breakwater is less than 1.0, and the wave forces decrease greatly for long structure when the relative length of the breakwater is larger than 0.5. Therefore, it is necessary to consider diffraction effects when the relative length of the breakwater is less than 1.0, and the relative length of the breakwater must be at least 0.5 in order to obtain a reduction of wave force on long structures.

A study on the Characteristics of Irregular Wave Transformation in the vincinity of Ulsan New Port by using the DELFT-3D (DELFT-3D를 이용한 울산신항 주변해역의 불규칙파랑변형에 관한 연구)

  • Kim Jae-Joong;Kim Nam-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.257-262
    • /
    • 2005
  • Environmental problems and safety problems in coastal area is one of the most important factors for designing coastal structures and maintaining facilities in coastal zone. And thus study on Wave transformation around coastal area is very important to develope a new port or on industrial area. Delft 3D-WAVE is applied to Ulsan new port area and the culculated results are analysed and compared with measured data Delft 3D-wave module is based on SWAN model which considers wave shoaling and refraction for irregular wave. This module also covers wind effect, bottom friction. white-capping and wave breaking effect. The results of this study show a good agreement with measured data and thus Delft 3D-WAVE module can be applied to simulate irregular wave transformation in coastal area.

On the Joint Distribution of Wave Height, Period and Wave Direction in Random Sea Waves (다방향불규칙파랑장에서의 파고, 주기, 파향의 종합확률분포 유도과정 및 적합성)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • A Wave transformation including wave breaking in shallow water region is a non-linear and discontinuous Phenomenon. Therefore, a so-called individual wave analysis (or a wave by wave analysis) rather than spectral approach seems to be adequate to investigate the wave transformation in such regions. In this study, a theoretical joint distribution of wave height, period and wave direction of zero-down crossing waves, which is required in the individual wave analysis in the shallow water region, is derived based on the hypothesis that sea surface is a Gaussian stochastic process and that a band-width of energy spectra is sufficiently narrow. The derived i oint distribution is found to be an effective measure to investigate characteristics of three-dimensional random wave field in shallow water through field measurements.

  • PDF