DOI QR코드

DOI QR Code

Prediction of Wave Force on a Long Structure of Semi-infinite Breakwater Type Considering Diffraction

회절을 고려한 반무한방파제 형식의 장대구조물에 작용하는 파력 예측

  • Jung, Jae-Sang (Rural Research Institute, Korea Rural Community Corporation) ;
  • Lee, Changhoon (Department of Civil and Environmental Engineering, Sejong University) ;
  • Cho, Yong-Sik (Department of Civil and Environmental Engineering, Hanyang University)
  • 정재상 (한국농어촌공사 농어촌연구원) ;
  • 이창훈 (세종대학교 건설환경공학과) ;
  • 조용식 (한양대학교 건설환경공학과)
  • Received : 2015.09.03
  • Accepted : 2015.12.02
  • Published : 2015.12.31

Abstract

In this study, the wave force distribution acting on a semi-infinite and vertical-type long structure is investigated considering diffraction. An analytical solution of the wave force acting on long structures is also suggested in this study. The wave forces on long structures are evaluated for monochromatic, uni-directional random, and multi-directional random waves. Diffraction effects in front of the breakwater and on the lee side of the breakwater are considered. The wave force on a long structure becomes zero when the relative length of the breakwater (1/L) is zero. The diffraction effects are relatively strong when the relative length of the breakwater is less than 1.0, and the wave forces decrease greatly for long structure when the relative length of the breakwater is larger than 0.5. Therefore, it is necessary to consider diffraction effects when the relative length of the breakwater is less than 1.0, and the relative length of the breakwater must be at least 0.5 in order to obtain a reduction of wave force on long structures.

본 연구에서는 회절을 고려하여 반무한방파제 형식의 직립식 장대구조물에 작용하는 파력에 대해 검토하였다. 장대구조물에 작용하는 파력은 규칙파, 일방향 불규칙파 및 다방향 불규칙파를 대상으로 하였다. 방파제 전면 및 후면에서 발생하는 회절을 모두 고려하였다. 방파제의 상대길이(1/L)가 0인 경우 방파제에 작용하는 파력은 회절에 의해 0이 된다. 방파제의 상대길이가 1.0 이하인 경우에는 회절의 영향이 비교적 강하였으며, 방파제의 상대길이가 0.5 이상인 경우에는 방파제의 장대화 효과에 의해 작용 파력이 크게 감소하였다. 즉, 방파제의 상대길이가 1.0 이하인 경우에는 회절효과의 고려가 필요하며, 장대 방파제의 파력 감소효과를 얻기 위해서는 방파제의 상대길이가 최소 0.5 이상이어야 함을 알 수 있다.

Keywords

References

  1. Allsop, N.W.H. and Calabrese, M. (1998). Impact loadings on vertical walls in directional seas, Proc. 26th Int. Conf. Coastal Eng., Copenhagen, Denmark, 2056-2068.
  2. Allsop, N.W.H., Vicinanza, D. and McKenna, J.E. (1996). Wave forces on vertical composite breakwaters, Report SR 443, HR Wallingford.
  3. Battjes, J.A. (1982). Effects of short-crestedness on wave loads on long structures. Applied Ocean Res., 4(3), 165-172. https://doi.org/10.1016/S0141-1187(82)80053-9
  4. Burcharth, H.F. and Liu, Z. (1999). Force reduction of short crested non-breaking waves on caissons, MASTIII PROVERBS, Probabilistic Design Tools for Vertical Breakwaters, MAS3-CT95-0041, IIa, Chapter 4.3, 1-26.
  5. Frigaard, P., Burcharth, H.F. and Kofoed, J.P. (1998). Wave impacts on caisson breakwaters situated in multidirectionally breaking seas, Proc. 26th Int. Conf. Coastal Eng., Copenhagen, Denmark, 1959-1970.
  6. Goda, Y. (2000). Random Seas and Design of Maritime Structures, World Scientific.
  7. Hasselmann, K. et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydrographisches Zeitschrift, 8(12). 1-95. (in German).
  8. Jung, J.-S., Kim, B.-H., Kim, H.-J. and Cho, Y.-S. (2010). Calculation of the peak-delay force reduction parameter of multidirectional random waves acting on a long caisson breakwater, J. Korean Society of Water Resources Association, 43(10), 843-850 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.10.843
  9. Jung, J.-S., Lee, C. and Cho, Y.-S. (2011). Effects of directional asymmetry of random wave loads on long structures, The 6th Iint. Conf. on Asian and Pacific Coasts, Hong Kong, 1695-1702.
  10. Kim, B.-H., Park, W.-S., Lee, J.-W. and Jung, J.-S. (2010). Making long caisson breakwater using interlocking system, the Magazine of the Korean Society of Civil Engineers, 58(12), 65-72 (in Korean).
  11. Lee, C., Jung J.-S. and Haller, M.C. (2010). Asymmetry in directional spreading function of random waves due to refraction, ASCE J. Waterway, Port, Coast. Ocean Eng., 136(1), 1-9. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000006
  12. Lee, C. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system, Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
  13. Martinelli, L., Lamberti, A. and Fgiraard, P. (2007). Effect of shortcrestedness and obliquity on non-breaking and breaking wave forces applied to vertical casson breakwaters, Coastal Eng. J., JSCE, 49(2), 173-203. https://doi.org/10.1142/S0578563407001599
  14. Park, S.-H., Park, W.-S. and Kim, H.S. (2011a). Evaluation of structural behavior for interlocking breakwater, 2011 Joint Conference of KAOSTS, 1915-1918 (in Korean).
  15. Park, W.-S., Park S.-H. and Jang S.-C. (2011b). Dynamic analysis model of interlocking breakwater systems for wave loadings, 2011 Joint Conference of KAOSTS, 2247-2249 (in Korean).
  16. Penney, W.G. and Price, A.T. (1952). The diffraction theory of sea waves by breakwaters and the shelter afforded by breakwaters, Philos. Trans. R. Soc. London, A(244), 236-253. https://doi.org/10.1098/rsta.1952.0003
  17. Radder, A.C. and Dingemans, M.W. (1985). Canonical equations for almost periodic, weakly nonlinear gravity waves, Wave Motion, 7, 473-485. https://doi.org/10.1016/0165-2125(85)90021-6
  18. Takahashi, S. (2002). Design of vertical breakwaters. Port and Airport Res. Inst.
  19. Takahashi, S. and Shimisako, K. (1990). Reduction of wave force on a long caisson of vertical breakwater and its stability. Report No. 685, The Port and Harbour Res. Inst. (in Japanese).
  20. Takayama, T. and Higashira, K. (2002). Statistical analysis on damage characteristics of breakwaters, J. Ocean Development. 18, 263-268. (in Japanese).
  21. Traetteberg, A. (1968). The effects of wave crests on wave forces. Proc. of the Int. Conf. on Coastal Eng., 11, 934-939.

Cited by

  1. Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces vol.29, pp.2, 2017, https://doi.org/10.9765/KSCOE.2017.29.2.77
  2. Distribution of Wave Forces at Points on a Vertical Structure of Semi-Infinite Breakwater Considering Diffraction vol.28, pp.4, 2016, https://doi.org/10.9765/KSCOE.2016.28.4.240