• 제목/요약/키워드: 다단 인발

검색결과 23건 처리시간 0.026초

인공신경망을 이용한 다단 인발 공정 설계 (Process Design of Multi-Step Wire Drawing using Artificial Neural Network)

  • 김동환;김동진;김병민
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.127-138
    • /
    • 1998
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network) has been considered. The investigated problem involves the ade-quate selection of the drawing die angle and the correspondent reduction rate in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite ele-ment simulation are selected by using the orthogonal array. Also the orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study it is shown that the application of new technique using ANN and Othogonal array table to the process design of metal forming process is useful method.

  • PDF

신경망을 이용한 다단 인발의 공정설계 (Process Design of Multi-Step Drawing using Artificial Neural Network)

  • 김동환;김동진;김병민;최재찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

고탄소강의 다단 인발 공정에서의 선재의 온도 예측 (Prediction of the wire temperature in a high carbon steel drawing process)

  • 김영식;김용철;김병민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.821-825
    • /
    • 2000
  • Drawing is one of the oldest metal forming operations and has major industrial significance. This process allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. In drawing of the high carbon steel wire, exit speeds of several hundreds meters per minute are very common. Drawing is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process like this, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. In this paper, therefore, to estimate the wire temperature in multi-stage wire drawing process, wire temperature prediction method was mathematically proposed. Using this method, temperature rise at deformation zone as well as temperature drop between die exit and the next die inlet were calculated.

  • PDF

습식 다단 인발공정 해석 프로그램 개발 밀 적용 (Development of Analysis Program for Multi-Pass Wet Wire Drawing Process and Its Application)

  • 이상곤;김민안;김병민;조형호
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.126-134
    • /
    • 2003
  • This paper investigates the multi-pass wet wire drawing process considering the slip between the wire and the capstan. The production of fine wire through multi-pass wet wire drawing process would be impossible without backtension. The backtension is affected by many process parameters, such as slip, dies reduction, coiling number of wire at the capstan, machine reduction, characteristic of lubricant etc. Up to date, die design and dies pass schedule of multi-pass wet wire drawing process have been performed by trial and error of expert in the industrial field. In this study, an analysis program which can perform the analysis and considering the effect of slip at each capstan was developed. The effects of many important parameters (drawing force, backtension force, needed power, slip rate, slip velocity rate etc.) on multi-pass wet wire drawing process can be predicted by this developed program. It is possible to obtain the important basic data which can be used in the pass schedule of multi-pass wet wire drawing process by using this developed program.

원형소재 다단 형상인발 공정설계 프로그램 (Process Design Program for Multistage Profile Drawing from Round Material)

  • 김성민;이상곤;이태규;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.377-382
    • /
    • 2011
  • Up to now, process design of multistage profile drawing from initial round material is performed through trial-and-error based on experience of industrial experts. This means the increase in production cost and excessive time consuming. In this study, process design program was developed for multistage profile drawing from initial round material. The program was made using VisualLISP. Therefore, the program can be operated by AutoCAD program. In order to verify the effectiveness of the program, two stage profile drawing process for producing heavy duty guide rail was design by using the program. In addition FE analysis and profile drawing experiment were performed. As a result, the program can be used in order to design profile drawing process design.

가압 그라우팅 쏘일네일링 공법의 인발거동 특성 (Pull-out Characteristics of Multi-Packer Pressurized Soil Nails)

  • 조재연;이성준;정상섬;안병흔
    • 한국지반공학회논문집
    • /
    • 제26권2호
    • /
    • pp.15-22
    • /
    • 2010
  • 본 연구에서는 현장 인발시험을 통하여 강관다단 가압식 쏘일네일링의 거동특성을 분석하였다. 이를 위하여 총 10공의 쏘일네일을 풍화토에 시공하여 인발시험을 실시하였다. 인발시험 결과에 의하면 쏘일네일의 극한인발력은 가압식 쏘일네일이 중력식 쏘일네일에 비하여 42~142% 증가하는 것으로 나타났다. 네일과 주변지반 경계면에서의 전단강도는 중력식 네일이 71kPa, 가압식 네일이 95~166kPa를 보이는 것으로 확인되었다. 가압식 쏘일네일의 경우 중력식 쏘일네일에 비하여 그라우트의 직경이 약 12~27% 증가하는 것으로 나타났다. 또한, 공팽창이론에 의한 가압 시 지반변위 산정값과 현장 인발시험을 통하여 측정한 값을 비교하였으며, 그 결과는 대체적으로 비슷한 경향을 보였다.

인발응력을 고려한 다단 형상인발 공정설계 (Process Design of Multi-pass Shape Drawing Considering the Drawing Stress)

  • 김성민;이상곤;이찬주;김병민;정명식;이선봉
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.