• Title/Summary/Keyword: 다공질 재료

Search Result 149, Processing Time 0.023 seconds

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents (다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거)

  • Sung, Sohyeon;Lee, Minjun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.596-610
    • /
    • 2021
  • For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.

Junction of Porous SiC Semiconductor and Ag Alloy (다공질 SiC 반도체와 Ag계 합금의 접합)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.576-583
    • /
    • 2018
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its band gap is larger than that of silicon and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, porous n-type SiC ceramics fabricated from ${\beta}-SiC$ powder have been found to show a high thermoelectric conversion efficiency in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$. For the application of SiC thermoelectric semiconductors, their figure of merit is an essential parameter, and high temperature (above $800^{\circ}C$) electrodes constitute an essential element. Generally, ceramics are not wetted by most conventional braze metals,. but alloying them with reactive additives can change their interfacial chemistries and promote both wetting and bonding. If a liquid is to wet a solid surface, the energy of the liquid-solid interface must be less than that of the solid, in which case there will be a driving force for the liquid to spread over the solid surface and to enter the capillary gaps. Consequently, using Ag with a relatively low melting point, the junction of the porous SiC semiconductor-Ag and/or its alloy-SiC and/or alumina substrate was studied. Ag-20Ti-20Cu filler metal showed promise as the high temperature electrode for SiC semiconductors.

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

Reinforcement of Calcium Phosphate Bioceramics through Microstructure Control

  • Yun, Gyeong-Min;Gong, Yeong-Min;Jeong, Dae-Yong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.42.2-42.2
    • /
    • 2009
  • 인체의 치아 및 뼈는 무기질 성분과 단백질로 구성되어 있다. 생체세라믹스의 일종인 수산화아파타이트(Hydroxyapatite, HA; $Ca_{10}(PO_4)_6(OH)_2$)는 결정학적, 화학적으로뼈의 무기질 성분과 거의 유사하여 실제 체내에 들어가면 주위 뼈와 화학적 반응을 하여 단단한 결합을 이루는 생체활성(bioactive)을 가진 것으로 알려져 있다. 또한, 인산삼칼슘(Tri-Calcium Phosphate, TCP; $Ca_3(PO_4)_2$)은 체내에 이식 시 체액에 용해되어 신생골을 유도하는 생체흡수성(bioresorbable) 세라믹스로 알려져 있다. 상기 2종류를 포함한 인산칼슘계 화합물은 우수한 생체친화성에도 불구하고 역학 특성이 낮아, 하중을 거의 받지 않는 분야에만 사용되고 있는 실정이며, 하중을받는 분야(load-bearing part)에 적용하기 위해서는 고강도/고인성의 세라믹스와의 micro-composite이나 인산칼슘계화합물을 금속 표면에 코팅한 macro-composite의 형태로 사용되고 있다. 하중을 거의 받지 않는 분야, 예를 들어 치아 결손부를 보충할 dental shot과 같은 인산칼슘계 다공질 골충전재의 경우에도 취급 시 잘게 파손되는 문제점이 있어 치과의사들이 어려움을 호소하고 있는 실정이다. 본 연구에서는 HA, TCP의 역학특성을 증진시키고자 소결 공정 제어를 통하여 미세조직을 변화시켰으며, 미세조직 변화에 따른 세포반응성을 골포세포주를 이용하여 평가하였다.

  • PDF

A Study on the Behaviour of High Temperature Corrosion of Fe-22Cr-5Al-X(X=Zr,Y) (Fe-22Cr-5Al-X(X=Zr,Y)합금의 고온 부식거동에 관한 연구)

  • Lee, Byeong-U;Park, Heung-Il;Kim, Jung-Seon;Lee, Gwang-Hak;Kim, Heung-Sik
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.898-907
    • /
    • 1997
  • Fe-22Cr-5AI-X(X=Zr, Y)합금을 1143K, 고온 황화(P$s_{2}$=1.11x$10^{-7}$atm, P$O_{s}$ =3.11x$10^{-20atm}$) 및 황화/산화 (P$s_{2}$=8.31x$10^{-8}$atm, P$O_{s}$ =3.31x$10^{-18atm}$) 환경의 복합가스 분위기에서 1-30시간동안 노출하여 합금표면에 형성된 부식층을 관찰하여 SEM/EDS로 분석하였다. Fe-22Cr-5AI합금은 고온 부식환경에서 부식 생성물의 성장은 포물선법칙을 따르고 주요 성분은 결함이 많고 다공질인 철과 크롬의 황화물[(Fe, Cr)Sx]이므로 고온 내식성이 감소하였다. Zr을 1wt%첨가한 Fe-22Cr-5AI합금의 고온 부식거동은 Y을 1wt%첨가한 합금과 비슷한 거동을 나타내었다. 황화환경에서는 Cr의 선택 황화에 의한 크롬 황화물(CrS)이 생성되고 노출시간의 경과에 따라 (Fe, Cr)Sx나 (Cr, Fe)Sx 등의 황화물의 성장으로 고온 내식성이 감소하였다. 그러나 황화/산화환경에서는 초기에는 알루미늄산화물(A $I_{2}$ $O_{3}$)및 지르코늄산화물(Zr $O_{2}$)등이 생성되어 보호적이었으나 15시간이후 부터 (Fe, Cr)Sx나 (Cr, Fe)Sx 의 황화물의 성장으로 고온 내식성이 감소하였다.

  • PDF

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration (NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.814-819
    • /
    • 2010
  • Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.

Field Emission properties of Porous Polycrystalline silicon Nano-Structure (다결정 다공질 실리콘 나노구조의 전계 방출 특성)

  • Lee, Joo-Won;Kim, Hoon;Park, Jong-Won;Lee, Yun-Hi;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.69-72
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^{2}$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Humidity sensors using porous silicon layer with mesa structure (메사구조를 갖는 다공질 실리콘 습도 센서)

  • Jeon, Byung-Hyun;Yang, Kyu-Yull;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.25-28
    • /
    • 2000
  • A capacitance-type humidity sensors in which porous silicon layer is used as humidity-sensing material was developed. This sensors was fabricated monolithically to be compatible with the typical IC process technology except for the formation of porous silicon layer. As the sensors is made as a mesa structure, the correct measurement of capacitance is expected because it can remove the effect of the parasitic capacitance from the bottom layer and another junctions. To do this, the sensor was fabricated using process steps such as localized formation of porous silicon, oxidation of porous silicon layer and etching of oxidized porous silicon layer. From completed sensors, capacitance response was measured on the relative humidity of 25 to 95% at room temperature. As the result the measured capacitance showed the increase over 300% at the low frequency of 120Hz, and showed little dependence on the temperature between 10 to $40^{\circ}C$.

  • PDF

Effect of Composition on Electrical Properties of SBT Thin Films Deposited by Reactive Sputtering (Reactive Sputtering으로 제조된 /SrBi_2Ta_2O_9$박막의 전기적 특성에 미치는 조성의 영향)

  • Park, Sang-Sik;Yang, Cheol-Hun;Chae, Su-Jin;Yun, Son-Gil;Kim, Ho-Gi
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.931-936
    • /
    • 1996
  • 비휘발성 메모리 소자에의 적용을 위한 SrBi2Ta2O9(SBT)박막이 고순도의 Sr, Bi, Ti 금속타겟을 사용하여 Pt/Ti/SiO2/Si 기판 위에 reactive sputtering 법에 의해 증착되었다. 조성의 영향을 평가하기 위하여 Bi 타겟에 인가되는 전원의 변화와 열처리에 따른 C-F(capacitance-frequency), P-E(polarization-electric field), I-V(current-voltage)등의 전기적 특성이 조사되었다. Bi의 양이 증가함에 따라 Bi layer 구조를 나타내는 (105)회절 피크가 증가하였고 $700^{\circ}C$, 산소분위기에서 1시간 동안 열처리후 Sr과 Bi가 심하게 휘발되었으며 박막의 미세구조는 다공질이 되었다. 이러한 이유로 열처리된 박막의 누설 전류 밀도는 증가하였다. 열처리된 시편의 조성은 거의 화학양론비를 이루었으며 4.5$\mu$C/$\textrm{cm}^2$의 Pr값을 갖는 강유전(ferroelectric)특성을 나타내었다.

  • PDF