• Title/Summary/Keyword: 다공질 유동

Search Result 36, Processing Time 0.023 seconds

Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis (다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장)

  • Shin, Chang Hoon;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.229-238
    • /
    • 2017
  • This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

Analysis of Fluid-Structure Interation Method Using the Porous Media (다공질 매체를 이용한 유체-구조물 상호작용(FSI) 해석)

  • Tak, Moon-Ho;Park, Tae-Hyo;Jang, Min-Wook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.300-303
    • /
    • 2009
  • 본 논문에서는 유체-구조물 상호작용(Fluid-Structure interaction;FSI)에 관한 새로운 수치적 접근 방법의 제안과 타당성 검토가 목적이다. 기존의 유체 관내 유동에서는 유체-구조물 상호작용방법을 이용하여 해석하였으나 해석과정과 수치적 효율성에 문제점이 있다. 본 논문은 다공질 매체 거동을 이용하여 관내 유체 유동해석이 제안된다. 제안된 기법은 기존의 방법이 갖는 모델링의 어려움을 개선하고, 비교적 복잡한 과정이 수행되어 많은 계산 시간이 요구되어지는 수치적 효율성이 개선되었다. 또한 다공질 매체 거동에서 중요요소인 침투성과 유체-구조물 상호작용의 중요요소인 유체와 구조물경계의 마찰사이의 관계가 도출되었다.

  • PDF

분말단조 해석을 위한 다공질 합금강 프리폼의 고온 업셋

  • Kim, Gi-Tae;Jo, Yun-Ho
    • Transactions of Materials Processing
    • /
    • v.1 no.2
    • /
    • pp.14-19
    • /
    • 1992
  • 분말단조 공정의 해석을 위한 기초연구로서 고용 업셋에 의한 다공질 합금강 프리폼의 치밀화와 소성 변형거동에 관하여 조사하였다. 다공질 프리폼의 소성 유동응력은 용도의 상승에 떠라 감소하였고, 변형속도의 증가에 따라 증가함을 보였다. 또한, 다공질 프리폼의 초기밀도가 더 높을수록 동일한 온도와 하중조건에서 더 높은 치밀화를 보였다. 또한, 밀도변화에 따른 프와송 비를 실험치로 부터 구하였고, 배불림 현상과 체적변화를 고려하여 온도에 따른 진응력-진변형률 관계를 구하였다.

  • PDF

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

The Mixed Finite Element Analysis for Nearly Incompressible and Impermeable Porous Media Using FETI (FETI를 이용한 비압축 비투과성 다공질 매체의 혼합유한요소해석)

  • Lee, Kyung-Jae;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.60-63
    • /
    • 2010
  • 일반적인 포화된 다공질 매체의 수치해석에서는 거시적 관점의 고체변형과 유체이동을 동시에 고려한 혼합유한요소방법(Mixed Finite Element Method)이 쓰인다. 그러나 고체변형이 거의 없는 상태에서 유체가 이동할 경우, 또는 고체변형과 유체유동이 거의 없고 외력에 의한 간극압만 존재할 경우 이를 혼합유한 요소방법으로 해석하기에는 요소 잠김(Element Locking)현상 때문에 매우 불안정하다. 본 논문에서 Park과 Tak(2010)이 제안한 비압축성, 비투과성 포화 다공질 매체의 해석기법인 Staggered Method를 소개하고 수치적 효율성을 높이기 위해 요소분할기술 중 하나인 FETI(Finite Element Tearing and Interconnecting) 기법의 접목을 제안하고자 한다.

  • PDF

DNS STUDY ON THE FLOW CHARACTERISTICS THROUGH SIMPLE POROUS HYDRAULIC FRACTURES (평판형 수압파쇄 균열을 통과하는 다공질유동 특성에 관한 DNS 해석 연구)

  • Shin, C.H.;Park, W.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2016
  • The flow analyses through a porous hydraulic fractures is among the most important tasks in recently developed shale reservoirs but is rendered difficult by non-Darcy effects and geometric changes in the hydraulic fractures during production. In this study, several Computational Fluid Dynamics(CFD) models of hydraulic fractures, with a simple shape such as that of parallel plates, filled with proppants were built. Direct Numerical Simulation(DNS) analyses were then carried out to examine the flow loss characteristics of the fractures. The hydraulic diameters for the simulation models were calculated using the DNS results, and then they were compared with the results from Kozeny's definition of hydraulic diameter which is most widely used in the flow analysis field. Also, the characteristic parameters based on both hydraulic diameters were estimated for the investigation of the flow loss variation features. Consequently, it was checked in this study that the hydraulic diameter based on Kozeny's definition is not accordant to the results from the DNS analyses, and the case using the CFD results exhibits f Re robustness like general pipe flows, whereas the other case using Kozeny's definition doesn't. Ultimately, it is expected that discoveries reported in this study would help further porous flow analyses such as hydraulic fracture flows.

A Study on the Liquid Flow Characteristics in Layer Porous Media (다공질매체내의 유체유동 특성에 관한 연구)

  • Lee, C.G.;Hwang, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.243-248
    • /
    • 1993
  • In this research, unsteady groundwater flow in unconfined and homogeneous three layer aquifers is studied theoretically and experimentally. Numerical solutions are obtained by Runge Kutta and Runge Kutta Gill method after transforming the governing nonlinear partial differential equations to nonlinear ordinary differential equations. Experimental apparatus includes a test section filled with fine, medium and coarse sands. Experimental results are compared with the numerical solutions and both experimental and numerical results correspond well with each other. This numerical approach may be also applied to the cases which have more aquifers.

  • PDF

The Buoyancy Effects in Horizontal Porous Layers with Vortical Through Flow (수직 투과 흐름이 있는 수평 다공질 유체층에서의 부력 효과)

  • Kim, Min-Chan;Kim, Sin;Yoon, Do-Young;Kim, Sae-Hoon
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.266-271
    • /
    • 2001
  • Buoyancy-driven natural convection is analysed by employing a linear stability theory in hori-zontal porous media with net through flow. Darcy's law is used to model the flow characteristics in porous media. Bated on the results of linear stability analysis, a heat transfer correlation was obtained by employing weakly nonlinear analysis. As the net through flow increases, the system becomes more stable and the effect of the Darcy-Rayleigh number on the Nusselt number decreases.

  • PDF

A Study on Heat and Mass Transfer in Porous Media (다공질 물질 속에서의 열 및 물질 전달에 대한 연구)

  • Chung, Mo
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.39-51
    • /
    • 1995
  • A numerical scheme based on a coordinate transform into stream function-velocity potential is proposed to solve heat and momentum transfer in porous media with phase change. A significant simplification of both computational domain and governing equations can be achieved by the transform. The dispersion term in the flow through porous media, which is important at the phase change interface, can be successfully incorporated into the numerical scheme without introducing any further computational complications.

  • PDF

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.