• Title/Summary/Keyword: 다공성 나노구조체

검색결과 48건 처리시간 0.029초

Design of $TiO_2$ electrode for DSSC

  • 이완인
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.22-22
    • /
    • 2010
  • 최근 염료감응형 태양전지(DSSC)는 광변환효율 측면에서 향상 가능성이 높으며, 전기화학적 반응을 바탕으로 하므로 생산단가가 낮아 차세대 태양전지로 관심을 모우고 있다. 염료감응형 태양전지에 있어서 주요 구성성분 중의 하나는 다공성 산화물 광전극 재료이다. 다양한 반도체 물질과 비교할 때 $TiO_2$는 전도대의 위치와 전자이동성 면에서 비교적 적합하며, 유기물과의 흡착성 및 안정성 측면에서 대단히 우수하다. 염료감응형 태양전지의 $TiO_2$ 광전극이 갖추어야 할 요건은 표면적이 넓어서 염료 흡착량이 많아야 하며, 전자전달 및 전해질 이동을 위한 효율적 구조이어야 한다. $TiO_2$ 광전극 제작을 위한 재료로서는 나노입자가 널리 이용되며, 입자의 크기는 20 nm 부근이 적합한 것으로 알려져 있다. 본 발표에서는 나노입자 외에 나노막대, 나노섬유, 나노튜브, inverse-opal 구조 등과 같이 지금까지 연구되고 있는 $TiO_2$ 나노구조 관련연구를 소개 한다. 한편으로 효율적 전극구조를 제작하려면 $TiO_2$ 나노구조 제어 외에도, 투명전극과 $TiO_2$ 전극과의 계면층(interfacial layer) 제어, 빛의 효율적 이용을 위한 산란층(scattering layer) 및 $TiO_2$ 전극에서 전해질로의 전자손실 억제를 위한 blocking layer 도입 등이 필요하다. 이에 대한 기본개념을 설명하고 다른 연구자의 연구결과를 소개한다. 본 연구실의 연구 결과인, 메조 포러스 구조, 다공성 속빈구 구조와 구형구조체를 합성하고 이를 염료감응형 태양전지에 응용한 내용을 소개한다. 다공성 속빈구의 경우, 산란층으로 대단히 우수한 결과를 나타내었고, 다공성 구형구조체는 광전극 주재료로 적합한 특성을 나타내었다. 즉, 다공성 구형구조체를 적용한 광전극은 표면적이 대단히 넓고 또한 효율적 동공구조가 형성되어 전해질 이동에도 매우 효율적이다.

  • PDF

Hydrothernal 방법을 이용한 PV 반사방지용 ZnO 나노 구조의 합성

  • 신범기;최지혁;;이태일;명재민
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.28.1-28.1
    • /
    • 2010
  • 다양한 반도체 재료 중 ZnO는 3.2 eV의 넓은 밴드 갭을 통한 고효율의 단파장 전기광학 소자 응용 개발에 대한 연구가 진행중에 있으며, 60 meV의 넓은 엑시톤 결합 에너지로 인해 높은 기계적, 열적 안정성을 가진다. 또한 높은 투과성과 굴절율(n=2)을 가지며 이방성 성장을 통한 텍스처 코팅이 가능함으로 PV(photovoltaics)용 유전체 ARC(anti-reflection coating) 재료로 유망하다. 텍스처된 표면은 빛을 차단시키며, 광대역에서 반사를 억제 시킨다. 또한 나노 구조를 통한 나노 다공성 표면은 광대역에서 빛을 모으는 장점이 있으며 태양전지 효율을 극대화 시킬 수 있다. 본 연구에서는 저온 공정이 가능한 hydrothermal 방법으로 다양한 ZnO 나노 구조를 합성하였다. 사용된 합성 재료로 사용되는 zinc nitrate($Zn(NO_3)_2.6H_2O$), hexamethyltetramine(HMT, $C_6H_{12}N_4$)의 농도 및 합성 온도 변화를 통해 다양한 나노구조(나노선, 나노막대, 나노시트 등)의 형태 및 크기를 제어하였다. 이러한 구조적인 변화를 토대로 텍스처된 다공성 나노구조를 형성시키고, 그 형상과 크기 차이에 따른 AR 특성을 평가하였다. ZnO 나노 구조의 결정학적 특성은 XRD(x-ray diffractometer)를 이용하여 분석하였으며, SEM(scanning electron microscope)을 통해 나노 구조의 모양과 크기를 관찰하였다. 또한 UV-Vis spectrophotometer를 통해 나노 구조의 흡수도와 반사도를 측정하였다.

  • PDF

커켄달 효과와 주형법을 통해 합성한 α-Fe2O3 중공입자로 구성된 다공성1차원 구조체의 리튬 이차전지 음극활물질 적용 (Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries)

  • 이영광;정순영;조중상
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.819-825
    • /
    • 2018
  • 본 연구는 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 나노구조체를 전기방사 공정 및 두단계의 후 열처리 과정을 통해 주형법과 커켄달 효과를 동시 적용하여 합성했다. 열처리 과정 중, 수 nm의 치밀한 Fe 금속입자는 커켄달 효과에 의해 중공구조를 갖는 ${\alpha}-Fe_2O_3$ 입자로 최종 변환되었다. 또한, 전기방사 용액에 첨가한 PS 나노비드는 첫 열처리 과정 중 분해되어 구조체 내 수많은 기공을 형성, 환원 및 산화를 위한 가스들이 구조체 내부로 원활히 침투될 수 있는 역할을 했다. 최종 생성물인 ${\alpha}-Fe_2O_3$ 중공입자로 구성된 다공성 1차원 구조체를 리튬 이차전지의 음극활물질로 적용한 결과, $1.0A\;g^{-1}$의 높은 전류밀도에도 불구하고 30 사이클 후 $776mA\;h\;g^{-1}$의 높은 방전 용량을 나타냈다. 이와 같은 우수한 리튬 저장특성은 본 구조체를 구성하는 중공형 ${\alpha}-Fe_2O_3$ 입자와 입자들 사이의 나노기공으로부터 기인한 결과이다. 본 연구에서 제안한 중공 입자로 구성된 다공성 1차원 나노구조체 합성 방법은 다양한 전이금속 화합물 조성에 적용 가능하므로 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.

전도성 다공성 구조 압력감지소자 (Pressure Sensitive Device Using Conductive and Porous Structures)

  • 소혜미;박철민;장원석
    • 대한기계학회논문집B
    • /
    • 제38권7호
    • /
    • pp.601-605
    • /
    • 2014
  • 일반적으로 표면적/부피비가 큰 전도성 다공체는 수퍼캐패시터의 전극이나 흡수제, 유연히터 등의 다양한 분야에 적용되어 왔다. 본 논문에서는 이러한 전도성 다공성 구조의 역학적 전기적 특성을 이용하여 고감도 압력센서를 구현하였다. 탄소나노튜브 용액에 스펀지를 적셔 다공체에 전도성을 부여하였으며, 압력에 따른 전도성 다공체의 저항 변화를 측정하였다. 전도성 스펀지에 압력이 가해졌을때, 각각의 탄소나노튜브들은 서로 맞붙게 되어 저항이 최대 20%까지 줄어듦을 확인하였다. 부드럽고 탄성력이 뛰어난 탄소나노튜브 스폰지는 반복적인 압축실험에도 모양의 변형 없이 매우 빠르게 안정화되고 일정한 저항변화를 확인할 수 있었다. 또한 스펀지 압력소자를 유연소자에 적용하기 위하여 탄소나노튜브 트랜지스터와 연결하여 외부압력에 따른 전기적 특성변화를 측정하였다.

High dispersion of Pt electro catalysts on porous carbon nanofibers for direct methanol fuel cells

  • 신동요;안건형;이도영;이은환;이영근;안효진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.411.2-411.2
    • /
    • 2016
  • 직접 메탄올 연료전지 (DMFCs)는 친환경적이고 낮은 작동 온도로 인한 빠른 구동, 높은 에너지 밀도 등 다양한 장점을 가지고 있어 차세대 에너지 변환소자로 많은 관심을 받고 있다. 직접 메탄올 연료전지는 메탄올을 연료로 사용하며, 메탄올이 보유하고 있는 화학적 에너지를 전기 에너지로 변환하는 장치로써 음극에서는 백금 촉매로 인한 메탄올 산화반응, 양극에서는 환원 반응이 일어나며 전기화학적 구동을 하게 된다. 하지만 일산화탄소 피독으로 인한 촉매 활성 저하, 메탄올의 cross over, 백금 촉매 사용으로 인한 고비용 등의 문제점을 가지고 있다. 따라서 많은 연구자들이 백금 사용량을 줄이고 백금 촉매를 고르게 분포하기 위해 값이 저렴하고 넓은 비표면적을 갖는 탄소계 (graphite, graphene, carbon nanotube, carbon nanofiber 등) 지지체 재료를 도입하고 있다. 이 중 탄소나노섬유 (carbon nanofibers, CNFs)는 우수한 전기전도도와 열적/화학적 안정성을 가지고 있으며, 특히 넓은 비표면적을 가지고 있어 백금 촉매의 지지체로서 많은 연구가 진행되고 있다[1]. 따라서 우리는 전기방사법을 활용하여 넓은 비표면적을 보유하는 다공성 탄소나노섬유를 성공적으로 합성하였다. 또한, 이를 백금 촉매의 지지체로 도입하여 직접 메탄올 연료전지를 위한 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매를 제조하였다. 제조한 다공성 탄소나노섬유의 형상 및 구조 분석은 주사전자 현미경 (field-emission scanning electron microscopy)와 투과전자 현미경 (transmission electron microscopy)를 이용하여 분석하였고, 결정구조와 화학적 결합상태는 X-선 회절분석 (X-ray diffraction) 및 X-선 광전자 분광법 (X-ray photoelectron spectroscopy)를 이용하여 규명하였다. 전기화학적 특성은 순환 전압 전류법 (cyclic voltammetry)를 이용하였다. 이러한 실험 결과들을 바탕으로 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매의 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

알루미늄 양극산화에 의한 포물선 형태의 다공성 나노 템플릿 제조 (Preparation of Porous Nano Template of Parabola Shape by Anodic Aluminum Oxide)

  • 김안나;김현종;임하나;정지혜;신치호;박춘만;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.274-274
    • /
    • 2015
  • 양극산화를 통해 생기는 다공성 알루미나 산화막의 기공은 전해질과 적절한 온도 등 제작 조건에서 자기 조립하여 고도로 정렬된 (Highly ordered) 나노기공을 가지는 AAO (AnodicAluminum Oxide)를 제조하는데 주로 쓰이고 있다. 본 연구에서는 다단계 산화방법으로 빛의 파장에 무관하게 빛의 반사를 매우 효과적으로 줄이는 포물선 형태의 Moth-eye 구조를 가지는 템플릿을 제조하였다. SEM 측정을 통해 구조체 다공성 알루미늄 산화막의 표면적 변화를 알 수 있었고, 일정한 크기와 모양의 pore가 규칙적으로 형성된 것을 확인하였다. 그리고 제조된 템플릿 내부에 고분자를 채워 포물선 형태의 나노핀을 갖는 필름을 제조할 수 있었다.

  • PDF

기공구조 조절 및 Pt촉매 증착을 이용한 다공성 탄소나노섬유의 수소가스 감지특성 (Hydrogen Sensing Property of Porous Carbon Nanofibers by Controlling Pore Structure and Depositing Pt Catalyst)

  • 강석창;임지선;이영석
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.243-248
    • /
    • 2011
  • 상온에서 작동하는 고감도 수소 가스센서를 제조하기 위하여 Pt 촉매가 증착된 다공성 탄소나노섬유를 제조하였다. 나노섬유는 polyacrylonitrile을 탄소전구체로 하여 전기방사법을 이용하여 제조되었고, 탄소나노섬유의 제조를 위하여 열처리 공정을 거쳤다. 다음으로, 탄소나노섬유에 화학적 활성화 공정을 통하여 가스 흡착을 위한 높은 비표면적과 기공구조를 부여하였다. Pt는 수소가스에 대한 촉매효과를 위하여 스퍼터링법을 통해 다공성 탄소나노섬유에 증착되었다. 탄소나노섬유는 화학적 활성화 공정을 통해 비표면적이 $2093m^2/g$으로 100배 이상 증가하였고, 약 60 vol%의 미세기공이 부여되었다. Pt는 다공성 탄소나노섬유의 형태를 그대로 유지하면서 얇고 고르게 증착되었다. 제조된 가스센서의 반응속도와 민감도는 비표면적, 미세기공율의 증가와 Pt 증착에 의하여 증가하였다. 결과적으로 수소가스에 대한 탄소나노섬유 상온에서 감응특성은 화학적 활성화와 Pt의 촉매효과에 의하여 향상됨을 알 수 있었다.

항균재료용 은나노 입자/알루미늄 하이드록사이드 나노복합재 제조

  • 서영익;전용진;김대건;이규환;김영도
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.46.1-46.1
    • /
    • 2009
  • 산업이 점차 발달함에 따라 발생하는 환경오염으로 인해 인간의 삶에 있어 불가분의 관계에 있는 물에 대한 관심이 지속적으로 높아지고 있는 추세이다. 각종 질병의 요인이 되는 박테리아는 주로 물을 운송 매개체로 하기 때문에 이로 인한 물의 오염으로 인도의 경우 모든 질병 발생의 80%를 차지하는 것으로 세계보건기구(WHO)에 의해 보고되었다. 현재까지물 또는 공기의 항균 및 살균 정화를 위해 화학적, 생물학적 방식 등 다양한 기술이 개발되었으나 박테리아와같은 세균제거에는 무리가 있는 실정이다. 따라서 본 연구에서는 여러 물질 중에서도 특히 항균작용(Antibacterial activity)이 탁월한 은(Ag)을 나노입자화하여 in-situ 코팅을 통한 다공성 알루미늄 하이드록사이드 나노복합재의 제조함으로써 생물학, 생체의용공학, 약학 등에 응용될 수 있는 새로운 형태의 항균재료제조방법을 제안하였다. 우선, 다공성 알루미늄 하이드록사이드기판은 알루미늄 기판에 알칼리 표면개질을 실시함으로서 표면에 마이크로포어가 형성된 알루미늄 하이드록사이드 기판을 제조하였다. 이렇게 제조된 다공성 기판에 Polyol 공정으로 은나노입자를 합성 및 분산시킴으로서 in-situ로 은나노입자가 분산된 알루미늄 하이드록사이드 나노복합재 기판을 만들수 있었다. 본 연구를 통하여 제조된 은나노입자가 분산된 알루미늄 하이드록사이드 나노복합재 기판은 주사전자현미경(SEM) 및 투과전자현미경(TEM)을 통하여 미세구조와 상분석을 실시하였으며 X선 광전자분석(XPS)를 이용하여 기판 표면의 화학적 상태를 분석하였다.

  • PDF