• Title/Summary/Keyword: 뉴턴의 운동법칙

Search Result 14, Processing Time 0.025 seconds

Newton's Huristics of the Discovery of Dynamics - Transformation and Synthesis (뉴턴의 발견법 - 변형재구성)

  • Park, Mi-Ra;Yang, Kyoung-Eun
    • Journal of Korean Philosophical Society
    • /
    • v.148
    • /
    • pp.157-181
    • /
    • 2018
  • The aim of this essay is to identify elements of methodologies to investigate the development of Newtonian dynamics. This methodology involves the transformation and synthesis of preceding theories. My essay attempts to confirm my assertion by analyzing historical case of Newton's discovery of his dynamics. While discovering his mechanistic theory, Newton reconstructed theoretical concepts and structures of intellectual predecessors, such as Aristotle, Descartes, Galileo, and Kepler. Newton's synthesis was possible only after carefully reconstructing the appropriate and useful ideas of previous natural philosophers' ideas. As a result, Newtonian dynamics are completed with these modified and integrated concepts incorporated into Newton's law of motion and space-time concepts. This study consists of two parts. First, Lakatos' research program has been applied in order to analyze the structure of Newtonian dynamics. Second, the aforementioned methodologies of discovery are distilled from the case study.

Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube (경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위)

  • Moh, Jeong Hah;Cho, Y.I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady.

Newton's Synthesis-the Discovery of Common Cause (뉴턴의 융합-공통원인의 발견)

  • Park, Mi-Ra;Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.243-254
    • /
    • 2016
  • This research identifies the elements of the methodologies of Newton's discovery of his dynamics. These methodologies involve the transformation of preceding theoretical concepts and the discovery of common cause. This essay consists of two parts within historical case studies of Newton's works. The elements of the method of discovery consists of the transformation of preceding concepts and the identification of common cause in the formation of the research program's hard cores and protective belts. Newton transformed their predecessors' concepts to find out appropriate common causes in his dynamical theory. The transformed theoretical concepts are synthesized to be constructed as the elements of common cause which provide the foundations of Newtonian research programs.

The Controversy on the Conceptual Foundation of Space-Time Geometry (시공간 기하학의 개념적 기초에 대한 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.273-292
    • /
    • 2009
  • According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics.

  • PDF

Development of a Dynamic Model for Real-Time Simulation of Tracked Vehicle (궤도차량의 실시간 시뮬레이션을 위한 동운동 모델 개발)

  • 안재준;오중석;윤석준
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.189-195
    • /
    • 2002
  • 궤도차량 운동의 실시간 시뮬레이션을 위해서 실시간 시간제약 조건을 만족하기 위한 모델링을 시도하였다. 단위 블록 열차로 연결된 전체 차체를 질점으로 가정하여 모델을 단순화함으로써 차량 설계 시 사용되는 궤도 차량 모델보다 실시간성을 향상시키고자 하였다. 당 모델에서 궤도차량의 운동은 트랙의 형상에 구속되는데, 차량의 운동 궤적은 궤도의 형상에 의해 결정된다. 단, 매 단위 시간마다에서 궤도 차량의 위치는 뉴턴의 제2법칙으로 결정된다. 본 모델링은 몇 개의 단위 트랙을 설정하여 이들의 조합으로 전체트랙을 설계할 수 있도록 사용자가 임의로 설계한 전체트랙에서 바로 실시간으로 시뮬레이션할 수 있는 특징을 갖는다. 당 궤도차량 운동 모델은 전동차, 철도, 롤러코스터의 궤도 설계 등에 사용될 수 있으며, 주 용도는 롤러코스터 게임 시뮬레이터에서 동 특성을 비교적 엄밀하게 시뮬레이션 하는데 있다.

  • PDF

Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front (유동장의 이동속도측정을 위한 가시화 및 영상처리 방안)

  • Kim Jae-Won;Han Sang-Hoon;Ahn Eun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1322-1328
    • /
    • 2005
  • The circulation flows passing through the Ekman boundary layer on the rotating disk and transfer the angular momentum into the interior region of the container. Consequently, the circulation enhances the momentum transfer and the interior fluid is divided by a propagating shear front. This investigation focuses on computer vision and image processing technique for analysis of Non-Newtonian Fluids. To visualize marching velocity shear front for the transient flow, a particular shaped particles and light are used. To validate the proposed method, quantitative image are compared with the optical data acquired by a direct measurement of LDV (Laser Doppler Velocimetry).

  • PDF

Motion of Stone Skipping Simulation by Physically-based Analysis (물리기반 해석을 통한 물수제비 운동 시뮬레이션)

  • Do, Joo-Young;Ra, Eun-Chul;Kim, Eun-Ju;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • Physically-based simulation modeling is to simulate the real world by using physical laws such as Newton's second law of motion, while other modelings use only geometric Properties. In this paper, we present a real time simulation of stone skipping by using the physically-based modeling. We also describe interaction of a stone on the surface of water, and focus on calculating the path of the stone and the natural phenomena of water The path is decided by velocity of the stone and drag force from the water The motion is recalculated until the stone is immersing into the water surface. Our simulation provides a natural motion of stone skippings in real time. And the motion of stone skippings are generated by give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

Pre-Service Elementary Teachers' Views on 'Action and Reaction': Focused on their Understandings and Typically-Perceived-Situations (TPS) (초등예비교사의 '작용과 반작용' 개념 -이해 정도와 전형적 인식상황 분석을 중심으로-)

  • Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.851-866
    • /
    • 2016
  • The purpose of this study is to investigate pre-service elementary teachers' views of the law of action-reaction by examining their degrees of understanding and Typically-Perceived-Situations (TPS). Data were collected from 177 Grade 3 pre-service elementary teachers. The results of analyzing these data show: First, the participants did not sufficiently understand about the law of action-reaction, and their degrees of understanding were different depending on the situation provided in the questionnaire. Second, in relation to the TPSs of the law of action-reaction, the participants thought of irrelevant situations to the law of action-reaction such as "a situation generated by inertia" as well as commonly relevant ones such as "a person pushing a wall", and had somewhat biased TPSs in terms of 'action type' and 'result motion type' of action-reaction. Finally, several suggestions on the science education for promotion of understanding about the law of action-reaction were given.

Multibody Dynamics Simulation and Experimental Study on the Tagline Control of a Cargo Suspended by a Floating Crane (해상크레인으로 인양하는 중량물의 Tagline 제어를 위한 다물체계 동역학 시뮬레이션 및 실험)

  • Ku, Nam-Kug;Lee, Kyu-Yuel;Kwon, Jung-Han;Cha, Ju-Hwan;Ham, Seung-Ho;Ha, Sol;Park, Kwang-Phil
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • This paper describes tagline PD control for reduction of motion for the heavy cargo(load) suspended by a floating crane. The equations of motion are set up considering the 6-degree-of-freedom floating crane and the 6-degree-of-freedom load based on multi-body system dynamics. The tagline mechanism is applied to floating crane to control motion of the heavy cargo(load). The winch, mounted on the deck of floating crane, is used to control the tension of tagline. To generate control force, PD control algorithm is applied. Numerical simulation and experiment is executed to verify the tagline control mechanism. The numerical simulation and experiment shows that the tagline control mechanism reduces the motion of the load suspended by a floating crane.

Reasoning Models in Physics Learning of Scientifically Gifted Students (과학영재의 물리개념 이해에 관한 사고모형)

  • Lee, Young-Mee;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.796-813
    • /
    • 2008
  • A good understanding of how gifted science students understand physics is important to developing and delivering effective curriculum for gifted science students. This dissertation reports on a systematic investigation of gifted science students' reasoning model in learning physics. An analysis of videotaped class work, written work and interviews indicate that I will discuss the framework to characterize student reasoning. There are three main groups of students. The first group of gifted science students holds several different understandings of a single concept and apply them inconsistently to the tasks related to that concept. Most of these students hold the Aristotelian Model about Newton's second law. In this case, I define this reasoning model as the manifold model. The second group of gifted science students hold a unitary understanding of a single concept and apply it consistently to several tasks. Most of these students hold a Newtonian Model about Newton's second law. In this case, I define this reasoning model as the coherence model. Finally, some gifted science students have a manifold model with several different perceptions of a single concept and apply them inconsistently to tasks related to the concept. Most of these students hold the Aristotelian Model about Newton's second law. In this case, I define this reasoning model as the coherence model.