The effects of the addition of starch, salt and soda ash to the dough for Naengmyon (wheat-sweet potato starch) on the mechanical property of Naengmyon noodle were evaluated by using creep test. The strain measurement was made by taking photograph with VTR system. The creep curve of noodle strand could be fitted to the 4 element Burgers model. The instantaneous elasticity and Newtonian viscosity of the noodle strand decreased by the addition of starch. The instantaneous elasticity decreased by the addition of salt up to 4%. The mechamical parameters of the noodle varied inconsistently by the addition of soda ash.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.3
/
pp.210-218
/
2002
This paper proposes an efficient separation method of the composite images by using independent component analysis(ICA) based on neural networks of the approximate learning algorithm. The Proposed learning algorithm is the fixed point(FP) algorithm based on Secant method which can be approximately computed by only the values of function for estimating the root of objective function for optimizing entropy. The secant method is an alternative of the Newton method which is essential to differentiate the function for estimating the root. It can achieve a superior property of the FP algorithm for ICA due to simplify the composite computation of differential process. The proposed algorithm has been applied to the composite signals and image generated by random mixing matrix in the 4 signal of 500-sample and the 10 images of $512{\times}512-pixel$, respectively The simulation results show that the proposed algorithm has better performance of the learning speed and the separation than those using the conventional algorithm based method. It also solved the training performances depending on initial points setting and the nonrealistic learning time for separating the large size image by using the conventional algorithm.
Proceedings of the Korea Multimedia Society Conference
/
2003.11b
/
pp.565-568
/
2003
본 연구에서는 고정점 알고리즘과 원 신호의 시간적 상관성을 적응조정한 견실 알고리즘의 조합형 독립성분분석을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법의 경신규칙에 따른 빠른 분석속도와 견실 알고리즘은 시간적 상관성과 낮은 kurtosis를 가지는 영상의 효과적인 분리를 얻기 위함이다. 제안된 알고리즘의 독립성분분석을 512$\times$512 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 발생되는 혼합영상의 분리에 적용한 결과, 기존의 고정점 알고리즘의 독립성분분석보다 우수한 분리성능과 빠른 분리속도가 있음을 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.90-93
/
2004
본 논문에서는 고정점 알고리즘의 독립성분분석을 이용한 물체영상의 특징추출을 제안하였다. 여기서 고정점 알고리즘은 뉴우턴법에 기초한 것으로 빠른 특징추출성능을 얻기 위함이고, 독립성분분석의 이용은 통계적으로 독립인 기저영상을 효과적으로 추출하기 위함이다. 제안된 기법을 Image*after사에서 제공하는 352$\times$264 픽셀의 10개 물체영상을 대상으로 실험한 결과, 빠르면서도 정확한 복원성능과 PCA보다도 개선된 특징 추출성능이 있음을 확인하였다.
This paper proposes an independent component analyses(ICAs) of the fixed-point (FP) algorithm based on Newton and secant method by adding the kurtosis, respectively. The kurtosis is applied to cluster the analyzed components, and the FP algorithm is applied to get the fast analysis and superior performance irrelevant to learning parameters. The proposed ICAs have been applied to the problems for separating the 6-mixed signals of 500 samples and 10-mixed images of $512\times512$ pixels, respectively. The experimental results show that the proposed ICAs have always a fixed analysis sequence. The results can be solved the limit of conventional ICA without a kurtosis which has a variable sequence depending on the running of algorithm. Especially. the proposed ICA can be used for classifying and identifying the signals or the images. The results also show that the secant method has better the separation speed and performance than Newton method. And, the secant method gives relatively larger improvement degree as the problem size increases.
This paper proposes an independent component analysis(ICA) of the fixed-point(FP) algorithm based on Newton method by adding the kurtosis. The kurtosis is applied for clustering the components, and the FP algorithm of Newton method is applied for improving the analysis speed and performance. The proposed ICA has been applied to the problems for separating the 6-mixed signals of 500 samples and 8-mixed images of $512\times512$pixels, respectively. The experimental results show that the proposed ICA has always a fixed analysis sequence. The result can be solved the limit of conventional ICA which has a variable sequence depending on the running of algorithm. Especially, the proposed ICA can be used to classify and identify the signals or the images.
Journal of The Korean Association For Science Education
/
v.9
no.2
/
pp.89-97
/
1989
어떤 현상에 대한 학생들의 수업전 개념구조가 과학자들의 그것과 다를때 이 수업전개념을 간단한 정성적인 퀴즈를 통하여 학생 스스로 인식하게 하고 실험 또는 관찰을 통하여 학생 자신의 수업전개념 보다는 과학자들의 개념이 실험결과를 더 잘 설명할 수 있다는 것을 깨닫게 함으로써 학생들의 수업전 개념구조를 변화시키려는 교수모델을 고안하여 그 효과를 검토하였다. 고등학교 1학년 남학생 115 명(실험집단 58명, 비교집단 57명)과 고등학교 2학년 여학생 120명(실험집단 59명, 비교집단 61명)을 대상으로 뉴우턴 제2법칙에 대한 학습에 적용하고 2주후에 뉴우턴 제2법칙에 관한 시험(13문항)을 실시하였다. 그 결과, 퀴즈에 사용한 것과 유사한 상황을 다룬 문제에서는 실험집단의 성적이 비교집단의 성적보다 유의하게 높았다. 그러나, 같은 개념을 다루나 새로운 상황의 문제에서는 그 효과가 유의한 차이를 나타내지 않았다. 한가지 개념이 여러가지 새로운 상황속에 나타날때 학생들에게 이미 친숙한 상황과 새로운 상황사이의 유사점을 강조하며 위의 교수법을 계속하여 사용한다면 학생들의 뿌리깊이 밝힌 수업전 개념구조를 변화시킬 수 있으리라 사료된다. 위의 교수법은 학생들이 자신의 수업전 개념구조를 명확히 인식하고 그 불합리함을 깨달아야 하므로 자신의 수업전 개념구조에 근거하여 어떤 결과를 예측할 수 있는 예측논리(Expectation or biconditional Reasoning)가 형성된 이후의 학생들에게만 효과가 있으리라 가정하였으나 교수방법과 예측논리 사이에 유의한 상호작용효과(interaction offect)는 나타나지 않았다. 다만 여학생의 경우에서만 학생들에게 새로운 상황의 문제에서도 예측논리를 이미 형성한 실험집단의 평균이 이에 상응하는 비교집단의 평균보다 높았다. 이것은 남학생과 여학생을 지도한 교사의 교수경력과 학생들의 수업전 개념구조에 대한 교사의 인식정도에 큰 차이가 있었음을 고려할 때, 위의 수업방법을 사용하는 데 있어 교사가 학생들의 수업전 개념구조가 학생들의 개념획득에 얼마나 커다란 영향을 끼치는가에 대해 인식하는 것이 중요한 요인임을 시사한다.
This paper proposes an efficient hybrid fixed-point (FP) algorithm for improving performances of the independent component analysis (ICA) based on neural networks. The proposed algorithm is the FP algorithm based on secant method and momentum for ICA. Secant method is applied to improve the separation performance by simplifying the computation process for estimating the root of objective function, which is to minimize the mutual informations of the independent components. The momentum is applied for high-speed convergence by restraining the oscillation if the process of converging to the optimal solution. It can simultaneously achieve a superior properties of the secant method and the momentum. The proposed algorithm has been applied to the composite fingerprints and the images generated by random mixing matrix in the 8 fingerprints of $256\times{256}$-pixel and the 10 images of $512\times{512}$-pixel, respectively. The simulation results show that the proposed algorithm has better performances of the separation speed and rate than those using the FP algorithm based on Newton and secant method. Especially, the secant FP algorithm can be solved the separating performances depending on initial points settings and the nonrealistic learning time for separating the large size images by using the Newton FP algorithm.
In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.
본 연구에서는 할선법과 모멘트의 고정점 알고리즘 독립성분분석을 이용하여 영상의 특징을 추출하는 기법을 제안하였다. 여기서 할선법은 독립성분 상호간의 정보를 최소화하기 위한 목적함수의 최적화 과정에서 요구되는 1차 미분에 따른 계산을 간략화하기 위함이고, 모멘트는 최적화 과정에서 발생하는 발진을 억제하여 보다 빠른 학습을 위함이다. 제안된 기법을 $256{\times}256$ 픽셀의 10개 지문영상에서 선택된 각각 10,000개의 3가지 영상패치들을 대상으로 적용한 결과, 제안된 기법은 뉴우턴법이나 할선법의 알고리즘 보다도 빠른 특징추출 속도가 있음을 확인하였다 한편 추출된 $16{\times}16$ 펙셀의 160개 독립성분 기저벡터 각각은 영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.