• Title/Summary/Keyword: 뇌파 스펙트럼 분석

Search Result 66, Processing Time 0.027 seconds

A Study on EEG based Concentration Transmission and Brain Computer Interface Application (뇌파기반 집중도 전송 및 BCI 적용에 관한 연구)

  • Lee, Chung-Heon;Kwon, Jang-Woo;Kim, Gyu-Dong;Hong, Jun-Eui;Shin, Dae-Seob;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.41-46
    • /
    • 2009
  • This research measures EEG signals which are generating on head skin and extracts brain concentration level related with brain activity. We develop concentration wireless transmission system for controlling hardware by using this signal. Two channels are used for measuring EEG signal on front head and Biopac system with MP100 and EEG100C was used for measuring EEG signal, amplifying and filtering the signal. LabView 8.5 was also used for FFT transformation, frequency and spectrum analysis of the measured EEG signals. As a result, SMR wave, Mid-Bata wave, $\Theta$ wave classified. We extracted the concentration index by adapting concentration extraction algorithm. This concentration uldex was transferred into logo automobile device by wireless module and applied for BCI application.

Generation of Control Signal based on Concentration Detection using EEG signal (뇌파 집중력 분석을 이용한 제어 신호 발생)

  • Kang, ByeongKeun;Yoon, Gilwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.254-260
    • /
    • 2013
  • Control signal generated from EEG (electro-encephalogram) can be used in many applications. In our study, for the purpose of developing practical instruments, a single channel system of providing reliable on/off signals was investigated since a multi-channel system can be bulky and expensive. Brainwaves in alpha, beta and theta bands were analyzed in order to extract reliable control signals when the concentration state reached. Rest and concentration states were differentiated based on power spectrum and histogram analysis. A better performance was obtained when the ratio between the beta and theta bands was used compared to the theta band only. In general, the longer the rest period before concentration, the lower success rate was. In addition, longer rest time produced longer detection time. Though there were individual differences, in case of 10-second rest time, a success rate of 91% and a detection time of 20.2 seconds was achieved on average.

A Study on the Power Spectral Analysis of Background EEG with Pisarenko Harmonic Decomposition (Pisarenko Harmonic Decomposition에 의한 배경 뇌파 파워 스펙트럼 분석에 관한 연구)

  • Jung, Myung-Jin;Hwang, Soo-Young;Choi, Kap-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1271-1275
    • /
    • 1987
  • With the stochastic process which consists of the harmonic sinusoid and the white nosie, the power spectrum of background EEG is estimated by the Pisarenko Harmonic Decomposition. The estimating results are examined and compared with the results from the maximum entropy spectral estimation, and the optimal order of this model can be determined from the eigen value's fluctuation of autocorrelation of background EEG. From the comparing results, this paper ensures that this method is possible to analyze the power spectrum of background EEG.

  • PDF

Trend Analysis of Affective Computing Technology for Diagnosis and Therapy of Autistic Spectrum Disorder (자폐스펙트럼장애 진단 및 치료를 위한 감성 컴퓨팅 기술 동향 분석)

  • Yoon, Hyun-Joong;Chung, Seong-Youb
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.429-440
    • /
    • 2010
  • It is known that as many as 1 in 91 children are diagnosed with an autistic spectrum disorder, and the incidence rate of the autistic spectrum disorder is much higher than that of cancer in Korea. It is necessary to develop a novel technology to sense their emotional status and give proper psychological diagnosis and therapy, since the children with autistic spectrum disorder usually do not express their own emotional status. This article presents the state-of-the-arts on the affective computing technologies that include recognition of emotional status through bio-sensing and virtual affective agent modeling, and then proposes a novel system architecture for diagnosis and therapy of autistic spectrum disorder. The diagnosis and therapy system of autistic spectrum disorder is composed of bio-sensing module, virtual environment module with affective agents, and haptic interface module. The architecture proposed in this paper will enhance the objectivity to diagnose autism spectrum disorders, and enable continuous treatment in daily life.

  • PDF

Quantitative Electroencephalogram Markers for Predicting Cerebral Amyloid Pathology in Non-Demented Older Individuals With Depression: A Preliminary Study (비치매 노인 우울증 환자에서 대뇌 아밀로이드 병리 예측을 위한 정량화 뇌파 지표: 예비연구)

  • Park, Seon Young;Chae, Soohyun;Park, Jinsick;Lee, Dong Young;Park, Jee Eun
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Objectives: When elderly patients show depressive symptoms, discrimination between depressive disorder and prodromal phase of Alzheimer's disease is important. We tested whether a quantitative electroencephalogram (qEEG) marker was associated with cerebral amyloid-β (Aβ) deposition in older adults with depression. Methods: Non-demented older individuals (≥ 55years) diagnosed with depression were included in the analyses (n = 63; 76.2% female; mean age ± standard deviation 73.7 ± 6.87 years). The participants were divided into Aβ+ (n = 32) and Aβ- (n = 31) groups based on amyloid PET assessment. EEG was recorded during the 7min eye-closed (EC) phase and 3min eye-open (EO) phase, and all EEG data were analyzed using Fourier transform spectral analysis. We tested interaction effects among Aβ positivity, condition (EC vs. EO), laterality (left, midline, or right), and polarity (frontal, central, or posterior) for EEG alpha band power. Then, the EC-to-EO alpha reactivity index (ARI) was examined as a neurophysiological marker for predicting Aβ+ in depressed older adults. Results: The mean power spectral density of the alpha band in EO phase showed a significant difference between the Aβ+ and Aβ- groups (F = 6.258, p = 0.015). A significant 3-way interaction was observed among Aβ positivity, condition, and laterality on alpha-band power after adjusting for age, sex, educational years, global cognitive function, medication use, and white matter hyperintensities on MRI (F = 3.720, p = 0.030). However, post-hoc analyses showed no significant difference in ARI according to Aβ status in any regions of interest. Conclusion: Among older adults with depression, increased power in EO phase alpha band was associated with Aβ positivity. However, EC-to-EO ARI was not confirmed as a predictor for Aβ+ in depressed older individuals. Future studies with larger samples are needed to confirm our results.

A Study on Evaluating Length Limit in Tangent Section of Highway Based on Driver's Workload (운전자 작업부하를 고려한 최장 허용 직선길이 결정에 관한 연구)

  • 정봉조;강정규;김주영;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • Driver's psychophysiological load is one of the key measures for evaluating the safety of the highway. The purpose of this study is to propose and to test the methodology of evaluating the length limit of tangent section using driver's psychophysiological load. Driver's psychophysiological data is represented by the data acquire by frontal and occipital lobe. In order to compare the differences between tangent segments and the orders, real road driving experiments were performed. We collected psychophysiological data during the operation of vehicles. The experimental data were analyzed using FFT (Fast Fourier Transform) and relative power spectrum tools. These routine produces the beta value which is a major factor in consideration of driver's condition. The results in this study are summarized as follows: (1) A new methodology of evaluating the length limit in tangent section of highway using driver's psychophysiological load was proposed. (2) It was observed that driver's work load at tangent section was three times lower than that at the other section types. The beta value at tangent section is 2.219, while that at general section is 0.821. (3) It was observed that the driver's work load was significantly dropped to 0.428 after the continuous driving of 4.2km tangent section. (4) Based on the experimental subjects(from 27 Years to 31). we suggest that 30 times of design speed(3.0 km) could be acceptable as the length limit of tangent section in highway rather than the Previous limit which is 20 times of design speed(2.0km).

The Influence of Number of Targets on Commonness Knowledge Generation and Brain Activity during the Life Science Commonness Discovery Task Performance (생명과학 공통성 발견 과제 수행에서 대상의 수가 공통성 지식 생성과 뇌 활성에 미치는 영향)

  • Kim, Yong-Seong;Jeong, Jin-Su
    • Journal of Science Education
    • /
    • v.43 no.1
    • /
    • pp.157-172
    • /
    • 2019
  • The purpose of this study is to analyze the influence of number of targets on common knowledge generation and brain activity during the common life science discovery task performance. In this study, 35 preliminary life science teachers participated. This study was intentionally made a block designed for EEG recording. EEGs were collected while subjects were performing common discovery tasks. The sLORETA method and the relative power spectrum analysis method were used to analyze the brain activity difference and the role of activated cortical and subcortical regions according to the degree of difficulty of common discovery task. As a result of the study, in the case of the Theta wave, the activity of the Theta wave was significantly decreased in the frontal lobe and increased in the occipital lobe when the difficult difficulty task was compared with the easy difficulty task. In the case of Alpha wave, the activity of Alpha decreased significantly in the frontal lobe when performing difficult task with difficulty. Beta wave activity decreased significantly in the frontal lobe, parietal lobe, and occipital lobe when performing difficult task. Finally, in the case of Gamma wave, activity of Gamma wave decreased in the frontal lobe and activity increased in the parietal lobe and temporal lobe when performing the difficult difficulty task compared to the task of easy difficulty. The level of difficulty of the commonality discovery task is determined by the cingulate gyrus, the cuneus, the lingual gyrus, the posterior cingulate, the precuneus, and the sub-gyral where it was shown to have an impact. Therefore, the difficulty of the commonality discovery task is the process of integrating the visual information extracted from the image and the location information, comparing the attributes of the objects, selecting the necessary information, visual work memory process of the selected information. It can be said to affect the process of perception.

Development for the Index of an Anesthesia Depth using the Power Spectrum Density Analysis (뇌파 스펙트럼 분석에 의한 마취 심도 지표 개발)

  • Ye, Soo-Young;Baik, Swang-Wan;Kim, Jae-Hyung;Park, Jun-Mo;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • In this paper, new index was developed to estimate the depth of anesthesia during general anesthesia using EEG. Analysis of the power spectral density(PSD) of EEG was used to develop new parameters because EEG signal tends to have slow wave during anesthesia. Classifier for index creator was developed by using SEF, BDR and BTR parameters, which are calculated by power spectral density. EEG data were obtained from 7 patients (ASA I, II) during general anesthesia with Sevoflurane. The anesthetic depth evaluation indexes ranged from 0 to 100. The average were $86.05{\pm}10.1$, $36.98{\pm}20.2$, $15.33{\pm}13.6$, $50.87{\pm}16.5$ and $87.72{\pm}11.7$ for the states of pre-operation, induction of anesthesia, operation, awaked and post-operation, respectively. The results show that while the depth of anesthesia was evaluated, more accurate information can be provided for anesthetician.

Basic ]Requirements for Spectrum Analysis of Electroencephalographic Effects of Central Acting Drugs (중추성 작용 약물의 뇌파 효과의 정량화를 위한 스펙트럼 분석에 필요한 기본적 조건의 검토)

  • 임선희;권지숙;김기민;박상진;정성훈;이만기
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.63-72
    • /
    • 2000
  • We intended to show some basic requirements for spectrum analysis of electroencephalogram (EEG) by visualizing the differences of the results according to different values of some parameters for analysis. Spectrum analysis is the most popular technique applied for the quantitative analysis of the electroen- cephalographic signals. Each step from signal acquisition through spectrum analysis to presentation of parameters was examined with providing some different values of parameters. The steps are:(1) signal acquisition; (2) spectrum analysis; (3) parameter extractions; and (4) presentation of results. In the step of signal acquisition, filtering and amplification of signal should be considered and sampling rate for analog-to-digital conversion is two-time faster than highest frequency component of signal. For the spectrum analysis, the length of signal or epoch size transformed to a function on frequency domain by courier transform is important. Win dowing method applied for the pre-processing before the analysis should be considered for reducing leakage problem. In the step of parameter extraction, data reduction has to be considered so that statistical comparison can be used in appropriate number of parameters. Generally, the log of power of all bands is derived from the spectrum. For good visualization and quantitative evaluation of time course of the parameters are presented in chronospectrogram.

  • PDF

Emotion Classification Using EEG Spectrum Analysis and Bayesian Approach (뇌파 스펙트럼 분석과 베이지안 접근법을 이용한 정서 분류)

  • Chung, Seong Youb;Yoon, Hyun Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper proposes an emotion classifier from EEG signals based on Bayes' theorem and a machine learning using a perceptron convergence algorithm. The emotions are represented on the valence and arousal dimensions. The fast Fourier transform spectrum analysis is used to extract features from the EEG signals. To verify the proposed method, we use an open database for emotion analysis using physiological signal (DEAP) and compare it with C-SVC which is one of the support vector machines. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the accuracy of the valence and arousal estimation is 67% and 66%, respectively. For the three-level class case, the accuracy is 53% and 51%, respectively. Compared with the best case of the C-SVC, the proposed classifier gave 4% and 8% more accurate estimations of valence and arousal for the two-level class. In estimation of three-level class, the proposed method showed a similar performance to the best case of the C-SVC.