DOI QR코드

DOI QR Code

The Influence of Number of Targets on Commonness Knowledge Generation and Brain Activity during the Life Science Commonness Discovery Task Performance

생명과학 공통성 발견 과제 수행에서 대상의 수가 공통성 지식 생성과 뇌 활성에 미치는 영향

  • 김용성 (대구대학교 한국특수교육문제연구소) ;
  • 정진수 (대구대학교)
  • Received : 2019.02.11
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

The purpose of this study is to analyze the influence of number of targets on common knowledge generation and brain activity during the common life science discovery task performance. In this study, 35 preliminary life science teachers participated. This study was intentionally made a block designed for EEG recording. EEGs were collected while subjects were performing common discovery tasks. The sLORETA method and the relative power spectrum analysis method were used to analyze the brain activity difference and the role of activated cortical and subcortical regions according to the degree of difficulty of common discovery task. As a result of the study, in the case of the Theta wave, the activity of the Theta wave was significantly decreased in the frontal lobe and increased in the occipital lobe when the difficult difficulty task was compared with the easy difficulty task. In the case of Alpha wave, the activity of Alpha decreased significantly in the frontal lobe when performing difficult task with difficulty. Beta wave activity decreased significantly in the frontal lobe, parietal lobe, and occipital lobe when performing difficult task. Finally, in the case of Gamma wave, activity of Gamma wave decreased in the frontal lobe and activity increased in the parietal lobe and temporal lobe when performing the difficult difficulty task compared to the task of easy difficulty. The level of difficulty of the commonality discovery task is determined by the cingulate gyrus, the cuneus, the lingual gyrus, the posterior cingulate, the precuneus, and the sub-gyral where it was shown to have an impact. Therefore, the difficulty of the commonality discovery task is the process of integrating the visual information extracted from the image and the location information, comparing the attributes of the objects, selecting the necessary information, visual work memory process of the selected information. It can be said to affect the process of perception.

이 연구의 목적은 난이도가 다른 생명과학공통성 발견 과제를 수행하는 동안 뇌 활성 차이를 분석하는 것이다. 이 연구에는 35명의 예비 생명과학교사들이 참여하였다. 이 연구는 뇌파 기록을 위한 블록디자인으로 설계되었다. 피험자들이 공통성 발견 과제를 수행하는 동안 뇌파가 수집되었다. sLORETA 분석 방법과 상대파워스펙트럼 분석 방법은 2개의 소재로 구성된 쉬운 난이도의 과제를 수행할 때와 5개의 소재로 구성된 어려운 난이도의 과제를 수행할 때 뇌 활성 차이를 분석하는 데에 이용되었다. 그리고 공통성 발견 과제의 난이도에 따라 활성화된 대뇌 피질과 피질하 영역의 역할을 조사하였다. 연구 결과 연구결과, 세타파의 경우, 쉬운 난이도 과제와 비교하여 어려운 난이도 과제 수행 시 세파타의 활성은 전두엽에서 유의미하게 감소하였고 후두엽에서는 증가하였다. 알파파의 경우, 쉬운 난이도 수행시보다 어려운 난이도의 과제를 수행할 때 전두엽에서 알파파의 활성이 유의미하게 감소하였다. 베타파의 활성은 어려운 난이도의 과제를 수행할 때 쉬운 난이도의 과제 수행시보다 전두엽, 두정엽, 후두엽에서 유의미하게 감소하였다. 마지막으로 감마파의 경우 쉬운 난이도의 과제를 수행할 때와 비교하여 어려운 난이도의 과제를 수행할 때 감마파의 활성이 전두엽에서는 감소하였고 두정엽과 측두엽에서는 활성이 증가하였다. 공통성 발견 과제의 난이도 수준은 대상이랑(cingulate gyrus), 쐐기소엽(cuneus), 혀이랑(Lingual gyrus), 후측 대상피질(posterior cingulate), 쐐기전소엽(precuneus), 엽하영역(sub-gyral)에 영향을 준다는 것을 보여주었다. 따라서 공통성 발견 과제의 난이도는 이미지로부터 인출된 시각적 정보와 위치정보를 통합하는 과정, 대상의 속성을 비교하고 필요한 정보를 선택하는 과정, 선택한 정보의 시각적 작업 기억 과정, 이 모든 과정에서의 주의집중에 대한 인지과정에 영향을 준다고 할 수 있다.

Keywords

References

  1. Abuseilek, A. F. (2006) The use of word processor for teaching writing to EFL learners in King Saud University. Journal of Educational Sciences and Slamicstudies, 19, 1-15.
  2. Compumedics(2002). Profusion EEG user guide. Abbotsford, VIC: Compumedics Limited.
  3. Choi, B. M. (2010). An analysis of pre-service biology teachers' EEG activities during commonness discovery(Master's Thesis). Daegu University, Daegu, Korea.
  4. Choi, S. Y., Kwon, S. H., & Kwon, Y. J. (2018). College student's brain connectivities in life science learning with VR contents -Resting state fMRI approach-. Biology Education, 46(1), 71-79. https://doi.org/10.15717/bioedu.2018.46.1.71
  5. Byeon, J. H., Kwon, S. H., & Kwon, Y. J. (2014). Cognitive difference of thinking process between science and general high school students' brain activations on biological classification. Biology Education, 42(2), 194-207.
  6. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J. & el-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58(10), 787-795. https://doi.org/10.1016/j.biopsych.2005.04.037
  7. Csikszentmihalyi, M. (1990). Optimal experience. New York, NY: Harper and Row.
  8. Fink, A., Grabner, R. H., Neuper, C., & Neubauer, A. C. (2005). EEG alpha band dissociation with increasing task demands. Cognitive Brain Research, 24, 252-259. https://doi.org/10.1016/j.cogbrainres.2005.02.002
  9. Fitzgibbon, S. P., Pope, K. J., Mackenzie, L., Clark, C. R., & Willoughby, J. O. (2004). Cognitive tasks argument gamma EEG power. Clinical Neurophysiology, 115, 1802-1809. https://doi.org/10.1016/j.clinph.2004.03.009
  10. Gazzaniga, M. S., Ivry R. B., & Mangun, G. R. (2008). Cognitive neuroscience : The biology of the mind(3rd ed.). New York, NY: W.W. Norton.
  11. Jeong, J. S., & Yun, S. G. (2008). The relative power spectral analysis of EEG activity during the inductive inquiry task performance with caminalcules. Biology Education, 36(4), 456-467. https://doi.org/10.15717/bioedu.2008.36.4.456
  12. Jeong, J. S., & Kim, Y. S. (2016). A sLORETA study of the effects of task similarity on brain activation during life science commonness discovery. Biology Education, 44(3), 372-382. https://doi.org/10.15717/bioedu.2016.44.3.372
  13. Kim, Y. S., & Jeong, J. S. (2018). Analysis of the effects of observation and classification learning program for students with low inductive inquiry achievement: An EEG study. Journal of Special Education & Rehabilitation Science, 57(1), 1-23. https://doi.org/10.23944/jsers.2018.03.57.1.1
  14. Kim, Y. S., & Jeong, J. S. (2017). The brain activity difference between knowledge generation and acceptance of low and general achieving students during the observation and classification activities. Journal of Special Education & Rehabilitation Science, 56(4), 25-47. https://doi.org/10.23944/Jsers.2017.12.56.4.2
  15. Klauer, K. J., & Phye, G. D. (1994). Cognitive training for children: A development program of inductive reasoning and problem solving. Seattle, WA; Hogrefe & Huber.
  16. Konnikova, M. (2013). Mastermind: How to Think Like Sherlock Holmes(생각의 재구성 : 하버드대 심리학자가 과학적 연구 결과로 풀어낸 셜록 홈스의 문제해결 사고법, I. Park, Trans.). New York, NY: Viking Press. (Original work published in 2013).
  17. Korean Brain Wave Research Association. (2017). The techniques and application of EEG analysis : From foundation to clinical studies . Seoul: Daehanuihak.
  18. Kwon, S. H., Oh, J. Y., Lee, Y. J., Eom, J. T., & Kwon, Y. J. (2016). Brain activation pattern and functional connectivity during convergence thinking and chemistry problem solving. Journal of the Korean Chemical Society, 60(3), 203-214. https://doi.org/10.5012/jkcs.2016.60.3.203
  19. Kwon, Y. J., Jeong, J. S., Kang, M. J., & Kim, Y. S. (2003). A grounded theory on the process of generating hypothesis-knowledge about scientific episodes. Journal of the Korean Association for in Science Education, 23(5), 458-469.
  20. Kwon, Y. J., Park, Y. B., Jeong, J. S., & Yang, I. H. (2004). A grounded theory on the process of scientific rulediscovery -Focused on the generation of scientific pattern-knowledge. Journal of the Korean Association for in Science Education, 23(1), 61-73
  21. Lee, H. J., Lee, J. K., & Kwon, Y. J. (2008). Pre-service biology teachers' brain activation patterns during the generation and application of commonness knowledge on biological phenomena: An fMRI study. Biology Education, 36(3), 251-265. https://doi.org/10.15717/bioedu.2008.36.3.251
  22. Lee, J. W., & Park, Y. M. (2016). Analysing the transcription mode effects on the beta-gamma activity in a writing assessment. Korean Language Education Research, 51(1), 252-285.
  23. Maguire, E. A., Frackowiak, R. S. J., & Frith, C. D. (1997). Recalling routes around london: Activation of the right hippocampus in the taxi drivers. The Journal of Neuroscience, 17(18), 7103-7110. https://doi.org/10.1523/JNEUROSCI.17-18-07103.1997
  24. Mayer, R. E. (1992). Cognition and instruction: Their historic meeting within educational psychology. Journal of Educational Psychology, 84, 405-412. https://doi.org/10.1037/0022-0663.84.4.405
  25. Park, Y. B. (2005). Investigation of the process of rule-knowledge generation in biological inquiry and its neurophysiological interpretation (Unpublished doctoral dissertation). Korea National University of Education, Chungbuk, Korea.
  26. Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York, NY: Cambridge University Press.
  27. Yun, Y. R. (2006). Motivating, interesting and self-learning ability. Journal of Education & Culture, 12, 181-198.
  28. Ward, J. (2017). Cognitive Neuroscience Introductory(인지신경과학 입문, D. H. Lee, H. J. Kim, D. J. Lee & S. H. Cho, Trans.). Seoul: Sigmapress. (Original work published in 2015).