Digital PLL을 위한 높은 해상도를 갖는 TDC(Time to Digital Converter)를 $0.18{\mu}m$ CMOS 공정으로 설계하였다. 2단 구조를 갖는 TDC를 제안하였고 이를 Cadence Spectre를 이용하여 검증하였다. TDC는 Difference pulse generator, coarse 변환기와 fine 변환기로 구성된다. 그리고, 2단 변환기와 Thermometer decoder를 이용하여 delay cell의 수를 적게 유지하면서도 높은 해상도를 얻을 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.701-704
/
2020
이미지 초해상도는 딥러닝의 발전과 함께 이를 활용하며 눈에 띄는 성능향상을 이루었다. 딥러닝을 기반으로 한 대부분의 이미지 초해상도 연구는 딥러닝 네트워크 모델의 구조에 대한 연구 위주로 진행되어 왔다. 그러나 최근 들어 딥러닝 기반의 이미지 초해상도가 합성된 데이터에 대해서는 높은 성능을 보이지만 실제 데이터에 대해서는 높은 성능을 보이지 못한다는 사실이 주목받고 있다. 이에 따라 모델 구조를 바꿔 성능을 향상 시키는 것에는 한계가 있어 데이터의 활용이나 학습 방법에 대한 연구의 필요성이 증대되고 있다. 따라서 본 논문은 이미지 초해상도를 위한 난이도 조절 기반 전이학습법(transfer learning)을 제안한다. 제안된 방법에서는 이미지 초해상도를 배율을 난이도가 쉬운 낮은 배율부터 순차적으로 전이학습을 진행한다. 이는 이미지 초해상도의 배율이 높아질수록 학습이 어렵기 때문이다. 결과적으로 본 논문에서는 높은 배율의 이미지 초해상도를 진행하기 위해 낮은 배율의 이미지 초해상도, 즉 난이도가 쉬운 학습부터 점진적으로 학습을 진행하였을 때 더욱 빠르고 효과적으로 학습할 수 있음을 보여준다. 제안된 전이학습 방법을 통해 적은 횟수의 업데이트로 학습을 진행하였을 때 일반적인 학습방법 대비 약 0.18 dB 의 PSNR 상승을 얻어, RealSR [9] 데이터셋에서 28.56 dB의 성능으로 파라미터 수 대비 높은 성능을 얻을 수 있었다.
For the performance improvement of a time-to-digital converter(TDC), a 2-stage high resolution TDC has been designed by using a 2-stage vernier time amplifier(2-S VTA). The two stage vernier time amplifier which has a gain over 64 of the resolution can enhance the resolution of the whole two stage TDC. Because of using a vernier TDC, the structure is not limited to advanced processes for achieving high resolution. The proposed TDC has been designed in a $0.18{\mu}m$ CMOS process and simulated with a 1.8V supply voltage. The entire input range is 512ps, and the full resolution 0.125ps.
대부분의 현대 항공기 조종실은 유사한 형태인 HUD, 2개 이상의 MFD, UFC, HOTAS 등으로 구성된다. 앞에서 언급한 바와 같이 최근에는 전투기에도 HMD와 DVI(Direct Voice Input)를 적용하고 있다. 미래의 조종실은 빠르게 발전하고 있는 평면 시현 기술로 인해 HDD는 2010년대에는 15 X 20인치 크기까지 지원이 가능할 것으로 예상되며 HUD가 없어지고 높은 해상도가 넓은 시계영역을 가진 HMD가 없어지고 높은 해상도와 넓은 시계영역을 가진 HMD로 다중 운용(Joing Service Operability) 및 다중 임무 수행이 가능한 조종실이 될 것이며 2025년대에는 레이저 운용에 적합한 조종실로 변화되어 캐노피가 없는 조종실(Windowless Codkpit) 또는 불투명 HMD를 사용한 설계개념으로 발전할 것이다.
GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.
계산유체 역학 분야에서는 유체 시뮬레이션 계산에 있어 계산 시간과 컴퓨터 메모리의 한계를 뛰어 넘는 유효 해상도를 달성하기 위하여 다양한 형태의 적응적 메쉬 기법들이 제시되어 왔다. 특히 최근에 컴퓨터 그래픽스 분야에서는 팔진 트리 기반의 메쉬 구조를 사용하여 중요 지역에 높은 해상도를 적용하려는 유체 애니메이션 방법이 제시되었다 [1]. 본 논문에서는 계산시간과 메모리 사용량을 보다 절약하기 위해, 이러한 적응적 방법을 확장하여 카메라의 특성을 이용하여 보이는 지역에 상대적으로 높은 해상도의 메쉬를 적용해주는 시점의존 방법을 제시한다. 이와 함께 시뮬레이션 과정에서 동적으로 변하는 메쉬 구조를 효율적으로 구현하기 위하여 기존의 팔진 트리와는 다른, 단순한 형태의 가변 메쉬 구조를 제시한다. 또한 실제 구현을 통하여 본 논문이 제시하는 시점의존기법이 유체 시뮬레이션 결과의 질을 비교적 잘 유지하면서, 계산에 필요한 자원을 효과적으로 줄일 수 있다는 사실을 보이도록 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.356-357
/
2012
본 논문에서는 Full-HD 영상에서 사용되는 H264/AVC의 정수 단위 고속 움직임 예측 방법을 제안한다. 제안되는 알고리즘에서는 다중 해상도 고속 움직임 예측 기법에 기반을 두어 두 계층이 각기 탐색된다. 낮은 해상도의 계층에서는 움직임 벡터 예측자를 중심으로 좁은 탐색 영역을 2 단계로 탐색하여 최적의 점을 찾는다. 높은 해상도의 계층에서는 4 단계로 탐색을 하여 탐색점의 개수를 줄인다. 그리고 두 계층에서 각기 구해진 탐색점들의 비용을 비교하여 매크로블록의 최종 움직임 벡터를 구한다. 시뮬레이션 결과에서는 기존의 연구 결과보다 JM을 기준으로 BD-Rate는 1.55 % 높았고, BD-PSNR은 0.05 dB 낮아진데 비해 시간은 63% 만큼 감소하여 높은 속도를 낼 수 있었다.
The maximum entropy method is a well-known parametric estimation method of the power spectrum with high-resolution for short-time signals. Although a parametric estimation method for the bispectrum was proposed in recent years, it is not easy to estimate the bispectrum with high resolution for relatively short-time signals of which the total length is about 1000 data points. In this paper, a bispectrum estimation method is proposed to estimate the high-resolution bispectrum even for the relatively short-time signals.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.417-417
/
2023
도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.502-502
/
2015
현재 기상레이더로부터 제공되고 있는 레이더 자료의 공간해상도는 $1^{\circ}{\times}250m$, 시간해상도는 10 분으로 보통 기상 및 수문분야에서는 10 분 이상의 $1km{\times}1km$의 격자 자료를 활용하고 있다. 그러나 이와 같은 크기의 해상도는 중규모 이상의 유역에서의 강우-유출 해석에 적합할지 모르나 이보다 고해상도의 자료를 요구하는 도시 유역과 같은 소규모 유역에서는 한계점이 있어왔다. 또한 너무 높은 해상도 자료를 강우-유출 과정에 입력하게 되면 레이더 강우 자료에 내포되어 있는 무작위 오차로 인해 강우-유출의 오차가 커지게 된다. 반면 너무 낮은 해상도 자료를 강우유출과정에 입력하게 되면 강우의 공간적인 특성이 평활화되고 이로 인해 레이더 강우 자료는 분포형 강우 자료로써의 기능을 잃게 된다. 이에 적절한 시공간 해상도 결정을 위해 공간 해상도에 따른 도시홍수모형의 입력 자료를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.