• Title/Summary/Keyword: 노면 온도

Search Result 41, Processing Time 0.02 seconds

Analyses on Sunshine Influence and Surface Freezing Section of Road using GIS (GIS를 이용한 도로의 일조영향 및 노면결빙구간 분석)

  • Lee Hyung Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.293-301
    • /
    • 2005
  • In case of the roads that pass the mountain area, the cut sections or the tunnels are constructed. And In winter season it appears sunshine few in the specific segment, the shade is continued last and the freezing sections occur. So, the attention is necessary in traffic safety. This study was to evaluate the influence of sunshine and surface freezing sections expected in route plans of roads using GIS and makes alternative ideas in road stability security. After selecting 29 km sections of Donghae highway and creating a 3 dimensional terrain surface through the digital conversion of design plan data, it reflects the road alignment data of the same coordinates and a 3 dimensional road modeling is created. It set shadow time of road surface for the solar trace in the winter solstice in 20 minute interval. Shade areas are displayed and inputed in polygon data by manual vertorizing. Graphic and attribute data of this shade section is constructed in geodatabase of ArcCatalog. And it extracted the freezing section using intersect fuction of the GIS spatial analysis. By analyzing the winter meteorological data of temperature, rainfall, snowfall, humidity, and etc. and grasping dangerous freezing section of the road surface effectively, it will be able to make alternative ideas of the preliminary stability evaluation reflected in basic design.

Performance Evaluation of Asphalt Concrete Pavements at Korea Expressway Corporation Test Road (시험도로 아스팔트 포장의 공용성 변화 분석)

  • Seo, Youngguk;Kwon, Soon-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.35-43
    • /
    • 2008
  • This paper mainly deals with the performance evaluation of 33 asphalt sections of Korea Expressway Corporation Test Road (KECTR) during the past four years. Since the construction of the KECTR in December 2002, key performance indicators of asphalt pavements have been collected five times with an Automatic Road Analyzer (ARAN), and have been analyzed for permanent deformation, surface distress, and road roughness. Linear viscoelastic characteristics of four dense graded HMAs used in KECTR were investigated with a series of complex modulus test. The effect of air void in HMAs on dynamic modulus was investigate at two air void contents for a surface course HMA (19 mm Nominal Maximum Size of Aggregate). Layer densification due to traffic was estimated from air void contents of field cored samples, and was correlated with pavement distresses and performances. One of findings of this study was that both permanent deformation and cracking were suspectible to pavement temperatures, rather than traffic. However, it was found that road roughness was mostly affected by traffic loading.

The Prognostic Model for the Prediction of the Road Surface Temperature by Using the Surface Energy Balance Theory (지표면 에너지 수지 이론을 이용한 도로노면온도예측을 위한 예단 모델 개발)

  • Song, Dong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.17-23
    • /
    • 2014
  • In this study, the prognostic model for the prediction of the road surface temperature is developed using the surface energy balance theory. This model not only has a detailed micro meteorological physical attribute but also is able to accurately represent each surface energy budget. To verify the performance, the developed model output was compared with the German Weather Service (DWD)'s Energy Balance Model (EBM) output, which is based on the energy budget balance theory, and the observations. The simulated results by using both models are very similar to each other and are compatible with the observed data.

A Study of the Prediction of the Temperature Reduction of Tire Sidewalls According to the Shape of the Cooling Fins (냉각핀 형상에 따른 타이어 사이드월의 표면온도 저감 효과 예측에 관한 연구)

  • Park, Jae Hyen;Jung, Sung Pil;Chung, Won Sun;Chun, Chul Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.245-253
    • /
    • 2016
  • The friction and deformation of a tire causes heat generation, which causes a temperature rise of the tire. This temperature rise can be a source of tire damage. The object of this study is to investigate the cooling effect of the application of a fin to the tire side to suppress the temperature rise. Eight different fin shapes were considered, and the sidewall surface temperature reduction owing to the cooling fin shape was numerically analyzed. In addition, the flow characteristics and heat transfer characteristics of the vortex of the pin rear were compared.

A Study on the adequate Aggregate Selection of the Exposed Aggregate PCC Pavements (골재노출 콘크리트포장의 적정 골재 선정에 대한 연구)

  • Kim, Young-Kyu;Chae, Sung-Wook;Lee, Seung-Woo;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-127
    • /
    • 2007
  • The exposed aggregate PCC(EAP) pavements have been successfully used in Europe and Japan as low-noise pavements. Coarse aggregate are exposed on the pavement surface texture of EAP by removing mortar of surface. The pavement surface texture should maintain not only low-noise characteristic but also adequate skid resistance level during the performance period. Skid resistance decreased with wearing and polishing of tire and pavement surface due to the repetition of tire-pavement contact. Since the tires mainly contact the exposed coarse aggregate, the shape and rock type of coarse aggregate significantly influence wearing and polishing of EAP pavements. The test for resistance to abrasion coarse aggregate by use of the Los Angeles machine(KS F 2508) and the method of test for resistance to abrasion coarse aggregate by use of the Accelerated Polishing Machine(ASTM D 3319-90) are generally used to evaluate polishing characteristics of aggregate. In this study, polishing of coarse aggregate of different five rock types were evaluated by KS F 2508(LA abrasion test) and ASTM D 3319-90(PSV method). The results of LA abrasion test and PSV method were contrary to each other. Since LA abrasion test is estimated the quantity of abrasion by the impact of aggregate, it may not be adequate to evaluate the polishing of aggregate by the repetition of tire. In the case of PSV method, the resistance of polishing is estimated the skid resistance variation of polished aggregate after repetition of tire. The PSV method is adequate for the evaluation on polishing of coarse aggregate. From the test results of PSV method, it was founded that rock type, specific gravity, coarse aggregate angularity, flat or elongated particles in coarse aggregate are significant to the resistance characteristic of coarse aggregate.

  • PDF

Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature (노면온도 변화 패턴의 신뢰성 검증 및 노면온도에 근거한 도로구간 분할 방법 연구)

  • Yang, Choong Heon;Yoon, Chun Joo;Kim, Jin Guk;Park, Jae Hong;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.

Evaluation of Surface Temperature Characteristics of Water Retaining Pavement using Sepiolite and Charcoal (해포석과 숯을 이용한 보수성포장의 노면온도 특성 평가)

  • Lee, Soo-Hyung;Lee, Hak-Ju;Kim, Je-Won;Yoo, In-Kyoon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.357-360
    • /
    • 2007
  • Water retaining pavement is a pavement to lower the surface temperature by using evaporation of the water that the pavement contains when the pavement is heated by the sun in the daytime. The objective of this study is to develop water retaining materials. In this study we evaluated the practical application of a sepiolite and a charcoal as a water retaining material. We produced dense grade asphalt pavement, porous asphalt pavement, semi-rigid Pavement, semi-rigid pavement included a charcoal and semi-rigid pavement included a sepiolite, and then tested surface temperature characteristics. The test result says that water retaining pavements using a sepiolite and a charcoal lower surface temperature more than $10^{\circ}C$ compared to dense grade asphalt pavement. We confirm the practical application of a sepiolite and a charcoal as a water retaining material according to the test results.

  • PDF

A Study on the Optimum Mix and Exposing Method of the Fine-Size Exposed Aggregate PCC Pavements (소입경 골재노출콘크리트포장의 최적 배합 및 노출기법에 관한 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Yoo, Tae-Seok;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-15
    • /
    • 2009
  • Surface of exposed aggregate concrete pavements is consists of exposed coarse aggregate by removing upper 2$\sim$3mm mortar of concrete slab. Exposed aggregate concrete pavements have advantages of maintaining low-noise and adequate skid-resistance level during the performance period. In order to provide the successful exposed concrete aggregate pavement, uniform distribution of the coarse aggregate on pavement surface through adequate the mix design and exposing method. The mix design in concrete pavement is generally designed on the basis of strength, but mix design of exposed aggregate pavement employed in this study includes the consideration of noise and skid resistance, as well as strength. Smaller of maximum coarse aggregate is known to be effective for reduce noise level. Optimum mix design and exposing method of fine-size exposed aggregate portland cement concrete pavement that can reducing the noise and maintain the adequate level of skid resistance are proposed in this study. To consider the variation of optimum exposing time due to the hardening speed of mortar by climatic condition, quantitative is also suggested measurement of hardening state.

  • PDF

Development of block-type sidewalk pavement system using snow-melting system (융설시스템을 이용한 조립식 보도포장 기술 개발)

  • Park, Kyungmo;Lee, Jeonguk;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.136-143
    • /
    • 2015
  • Snow-melting system has been applied not only to roads for car traffic but also to pavement for the pedestrians safety reason in some of the developed countries such as USA and Canada based on countermeasures against Natural Disasters Act revised in 2000. Even though this system was introduced in korea in 2006 and has been partly applied to car traffic roads, there is few places that the system has been applied. Therefore, in this research a snow-melting system with a block-type to cover a pavement that efficiently transfers heat form heat rays to the top of a pavement and protects the heat rays. A quality check showed that compression and bending strength was improved approximately 5 times stronger and 7 to 10 times more absorption rate than the KS(Korea Industrial Standard) requirement. Moreover, only 10 minute was required to increase temperature above zero with a block-type snow-melting system whereas approximately 180 minute was spent with the existing system. This research is expected to contribute to environmental issues and reduce accidents on a slippery road.

Developing Models for Patterns of Road Surface Temperature Change using Road and Weather Conditions (도로 및 기상조건을 고려한 노면온도변화 패턴 추정 모형 개발)

  • Kim, Jin Guk;Yang, Choong Heon;Kim, Seoung Bum;Yun, Duk Geun;Park, Jae Hong
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.127-135
    • /
    • 2018
  • PURPOSES : This study develops various models that can estimate the pattern of road surface temperature changes using machine learning methods. METHODS : Both a thermal mapping system and weather forecast information were employed in order to collect data for developing the models. In previous studies, the authors defined road surface temperature data as a response, while vehicular ambient temperature, air temperature, and humidity were considered as predictors. In this research, two additional factors-road type and weather forecasts-were considered for the estimation of the road surface temperature change pattern. Finally, a total of six models for estimating the pattern of road surface temperature changes were developed using the MATLAB program, which provides the classification learner as a machine learning tool. RESULTS : Model 5 was considered the most superior owing to its high accuracy. It was seen that the accuracy of the model could increase when weather forecasts (e.g., Sky Status) were applied. A comparison between Models 4 and 5 showed that the influence of humidity on road surface temperature changes is negligible. CONCLUSIONS : Even though Models 4, 5, and 6 demonstrated the same performance in terms of average absolute error (AAE), Model 5 can be considered the optimal one from the point of view of accuracy.