DOI QR코드

DOI QR Code

The Prognostic Model for the Prediction of the Road Surface Temperature by Using the Surface Energy Balance Theory

지표면 에너지 수지 이론을 이용한 도로노면온도예측을 위한 예단 모델 개발

  • Received : 2014.03.28
  • Accepted : 2014.11.03
  • Published : 2014.11.30

Abstract

In this study, the prognostic model for the prediction of the road surface temperature is developed using the surface energy balance theory. This model not only has a detailed micro meteorological physical attribute but also is able to accurately represent each surface energy budget. To verify the performance, the developed model output was compared with the German Weather Service (DWD)'s Energy Balance Model (EBM) output, which is based on the energy budget balance theory, and the observations. The simulated results by using both models are very similar to each other and are compatible with the observed data.

본 연구는 지표면 에너지 수지 이론을 이용한 도로노면온도예측을 위한 예단 모델을 개발하기 위한 것으로, 개발된 모델은 지표면 에너지 수지를 정확하게 표현함으로서 매우 복잡한 미기상학적 물리 과정을 표현할 수 있다. 모델의 성능을 검증하기 위하여 독일 기상청의 모델과 비교 실험을 하였으며, 독일의 관측자료 그리고 한국 기상청의 도로기상 관측 시스템의 관측자료를 이용하여 비교 검증하였다. 비교 결과 독일의 모델 결과와 매우 유사한 결과를 나타냈으며, 각 관측 자료값들과 잘 일치하였다.

Keywords

References

  1. Atkinson, B. W. (1981), Meso-Scale Atmospheric Circulations. Atmospheric Press, London.
  2. Betchtold, P., J. P. Pinty and P. Mascart (1991), A numerical investigation of the influence of large-scale winds on sea-breeze/land-breeze type circulation. J. appl. Met., 30, pp.1268-1279. https://doi.org/10.1175/1520-0450(1991)030<1268:ANIOTI>2.0.CO;2
  3. Bhumralkar, C. M. (1975), Numerical experiments on the computation of the ground surface temperature in atmospheric general circulation model. J. Appl. Meteor., 14, pp.67-100. https://doi.org/10.1175/1520-0450(1975)014<0067:OAOAPA>2.0.CO;2
  4. Blackadar, A. K. (1976), Modeling nocturnal boundary layer. Proc. 3rd Symposium on Atmos. Turbulence, diffusion, and air quality, Raleigh, NC, Amer. Meteor. Soc., pp.46-49.
  5. Brutsaert, W. (1982), Evaporation into the atmosphere: Thoery, History and Application D. Reidel Publishing Company, Dordrecht.
  6. Carson, D. J. (1982), Current parameterization of land-surface processes in atmospheric general circulation models, Ed. by Eagleson, C.U.P., London, pp.67-108.
  7. Du, J., Song, K., Wang, Z., Zhang, B. and Liu, D. (2013), Evapotranspiration estimation based od MODIS products and surface energy balance algorithms for land(SEBAL) model in Sanjiang Plain, Northeast China, Chinese Geographical Science, 23:1, pp.73-91. https://doi.org/10.1007/s11769-013-0587-8
  8. Garratt, J. P. (1992), The atmospheric boundary layer. Cambridge Univ. Press. 316pp.
  9. Gutierrez, M.V. and Meinzer, F.C. (1994), Energy balance and latent heat flux partitioning in coffee hedgerows at different stages of canopy development, Agric. Forestry Meteorol., 68, pp.173-186. https://doi.org/10.1016/0168-1923(94)90034-5
  10. Lagos, L.O., Martin, D.L., Verma, S.B., Suyker, A. and Irmak, S. (2011), Surface energy balance model of transpiration from variable canopy cover and evaporation from reside-covered or bare-soil systems: model evaluation, Irrigation Science, 31:2, pp. 135-150.
  11. McCumber, M.C. (1980), A numerical simulation of the influence of heat and moisure fluxes upon mesoscale circulations. Ph.D. dissertation, Dept. of Environmental Science, Univ of Virginia, Charlottesville, 255pp.
  12. Monteith, J.L. (1981), Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc., 107, pp.1-27. https://doi.org/10.1002/qj.49710745102
  13. Noihan, J. M. and S. Planton (1989), A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, pp.536-549. https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
  14. Park, S.-U. (1994). The effect of surface physical conditions on the growth of the atmospheric boundary layer. J. Kor. Meteor. Soc., 30(1), pp.119-134.
  15. Pielke, R. A. (1984), Mesoscale meteorological modeling. Academic Press, New York, pp.612.
  16. Sato (2009), Road surface temperature forecasting (case study in mountainous region of Japan), Proceeding of cold region technology conference, pp.382-388.
  17. Schmugge, T. and Humes, K. (1995), Aster observations for the monitoring of land surface fluxes, J. Jap. Remote Sensing Soc., 15, pp.83-89.
  18. Segal, M., W. E. Schreiber, G. Kallos, J. R. Garratt, A. Rodi, J. Weaver and R. A. Pielke, (1989), The impact of crop areas in northeast Colorado on midsummer mesoscale thermal circulations. Mon. Wea. Rev., 117, pp.809-825. https://doi.org/10.1175/1520-0493(1989)117<0809:TIOCAI>2.0.CO;2
  19. Senay, G.B., Budde, M.E. and Verdin, J.P. (2010), Enhancing the simplified surface energy balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model, Agricultural Water Management, 98:4, pp.606-618.
  20. Zhihao, Q., Pedro, B. and Arnon, K. (2002), Numerical solution of a complete surface energy balance model for simulation of heat fluxes and surface temperature under bare soil environment, Applied Mathematics and Computation, 130:1, pp.171-200. https://doi.org/10.1016/S0096-3003(01)00089-3