• 제목/요약/키워드: 네트워크 임베딩

검색결과 55건 처리시간 0.031초

효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구 (A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection)

  • 박성수;이건창
    • 디지털융복합연구
    • /
    • 제17권5호
    • /
    • pp.137-143
    • /
    • 2019
  • 가짜 뉴스는 소셜 미디어와 같이 사용자가 상호작용하는 미디어 플랫폼에서 정보가 빠른 속도로 확산되는 이점을 가지는 오류 정보(misinformation)의 한 형태이다. 최근 가짜 뉴스의 증가로 인해 사회적으로 많은 문제가 발생하고 있다. 본 논문에서는 이러한 가짜 뉴스를 탐지하는 방법을 제안한다. 이전의 가짜 뉴스 탐지는 텍스트 분석을 사용한 연구가 주로 수행되었다. 본 연구는 소셜 미디어의 뉴스가 확산되는 네트워크에 초점을 두고, 네트워크 임베딩 방법인 DeepWalk 로 자질을 생성하고 로지스틱 회귀분석을 사용하여 가짜 뉴스를 분류한다. 인터넷에 공개된 뉴스 211개와 120만개의 뉴스 확산 네트워크 데이터를 사용한 가짜 뉴스 탐지에 대한 실험을 수행하였다. 연구 결과 텍스트 분석에 비하여 네트워크 임베딩을 사용한 가짜 뉴스 탐지의 정확도가 최소 1.7%에서 최대 10.6% 더 높게 나타났다. 또한, 텍스트 분석과 네트워크 임베딩을 결합한 가짜 뉴스 탐지는 네트워크 임베딩에 비해 정확도의 상승이 나타나지 않았다. 본 연구의 결과는 기업이나 조직은 온라인 상에서 확산되는 가짜 뉴스 탐지에 효과적으로 활용될 수 있다.

공간적 그래프 임베딩을 활용한 그래프 암시적 신경 표현 (Graph Implicit Neural Representations Using Spatial Graph Embeddings)

  • 박진호;김동우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.23-26
    • /
    • 2024
  • 본 논문에서는 그래프 구조의 데이터에서 각 노드의 신호를 예측하는 연구를 진행하였다. 이를 위해 분석하고자 하는 그래프에 대해 연결 관계를 기반으로 각 노드에 비-유클리드 공간 상에서의 좌표를 부여하여 그래프의 공간적 임베딩을 얻은 뒤, 각 노드의 공간적 임베딩을 입력으로 받고 해당 노드의 신호를 예측하는 그래프 암시적 신경 표현 모델을 제안 하였다. 제안된 모델의 검증을 위해 네트워크형 데이터와 3차원 메시 데이터 두 종류의 그래프 데이터에 대하여 신호 학습, 신호 예측 및 메시 데이터의 초해상도 과정 실험들을 진행하였다. 전반적으로 기존의 그래프 암시적 신경 표현 모델과 비교하였을 때 비슷하거나 더 우수한 성능을 보였으며, 특히 네트워크형 그래프 데이터 신호 예측 실험에서 큰 성능 향상을 보였다.

  • PDF

계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측 (STL-Attention based Traffic Prediction with Seasonality Embedding)

  • 염성웅;최철웅;콜레카르 시바니 산제이;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.

3차원 메쉬에 대한 완전 이진트리의 링크 충돌없는 임베딩 (Link-Disjoint Embedding of Complete Binary Trees in 3D-Meshes)

  • 이주영;이상규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권7_8호
    • /
    • pp.381-386
    • /
    • 2003
  • 본 논문에서는 완전이진트리의 3차원 메쉬로의 임베딩 문제를 다룬다. 링크 충돌을 2까지 허용하면서 최적크기의 메쉬에 임베딩하는 방법은 [1]에서 다루고 있으며, [2]에서는 최적크기의 1.27배의 메쉬로 임베딩하는 방법을 보여주고 있다. 본 논문에서 제안하는 임베딩 방법은 순위차원 라우팅을 사용하며 링크 충돌이 없는 방법으로, 약 1.125배의 최적확장을 넘지 않는다. 이 임베딩 방법은 링크의 충돌 혹은, 임베딩의 확장을 최소화한다는 기준에서 볼 때 기존의 임베딩 방법에 비해 향상된 결과이다.

문장 독립 화자 검증을 위한 그룹기반 화자 임베딩 (Group-based speaker embeddings for text-independent speaker verification)

  • 정영문;엄영식;이영현;김회린
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.496-502
    • /
    • 2021
  • 딥러닝 기반의 심층 화자 임베딩 방식은 최근 문장 독립 화자 검증 연구에 널리 사용되고 있으며, 기존의 i-vector 방식에 비해 더 좋은 성능을 보이고 있다. 본 연구에서는 심층 화자 임베딩 방식을 발전시키기 위하여, 화자의 그룹 정보를 도입한 그룹기반 화자 임베딩을 제안한다. 훈련 데이터 내에 존재하는 전체 화자들을 정해진 개수의 그룹으로 비지도 클러스터링 하며, 고정된 길이의 그룹 임베딩 벡터가 각각의 그룹을 대표한다. 그룹 결정 네트워크가 각 그룹에 대응되는 그룹 가중치를 출력하며, 이를 이용한 그룹 임베딩 벡터들의 가중 합을 통해 집합 그룹 임베딩을 추출한다. 최종적으로 집합 그룹 임베딩을 심층 화자 임베딩에 더해주어 그룹기반 화자 임베딩을 생성한다. 이러한 방식을 통해 그룹 정보를 심층 화자 임베딩에 도입함으로써, 화자 임베딩이 나타낼 수 있는 전체 화자의 검색 공간을 줄일 수 있고, 이를 통해 화자 임베딩은 많은 수의 화자를 유연하게 표현할 수 있다. VoxCeleb1 데이터베이스를 이용하여 본 연구에서 제안하는 방식이 기존의 방식을 개선시킨다는 것을 확인하였다.

매크로-스타 네트워크와 전위 네트워크간의 노드 사상 알고리즘 (Node Mapping Algorithm Between Macro-star Newworks and Transposition Networks)

  • 서정현;이형옥;장문석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (B)
    • /
    • pp.584-587
    • /
    • 2008
  • 매크로-스타그래프와 전위그래프는 Cayley 그래프로 널리 알려지니 상호연결망이다. 본 논문에서는 매크로-스타그래프와 전위그래프에 연장을 5, 확장률 1에 임베딩 가능함을 보인다. 또한, 전위그래프를 매크로-스타 그래프에 임베딩하는 연장율이 O(n)이지만, 평균 연장율이 2이하임을 보인다. n은 전위 그래프의 차원이다.

  • PDF

딥러닝 네트워크 압축을 위한 양자화 오프셋의 바이어스 임베딩 기법 (Bias embedding of quantization offset for convolutional network compression)

  • 정진우;김성제;홍민수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.127-128
    • /
    • 2020
  • 본 논문은 딥러닝 네트워크의 압축을 위한 양자화 오프셋의 바이어스 기법을 제안한다. 양자화는 32비트 정밀도를 갖는 가중치와 활성화 데이터를 특정 비트 이하의 정수로 압축한다. 양자화는 원 데이터에 스케일과 오프셋을 더함으로써 수행되므로 오프셋을 위한 합성곱 연산이 추가된다. 본 논문에서는 입력 활성화 데이터의 양자화 오프셋과 가중치의 합성곱의 출력은 바이어스에 임베딩될 수 있음을 보여준다. 이를 통해 추론 과정 중 오프셋의 합성곱 연산을 제거할 수 있다. 실험 결과는 오프셋의 합성곱이 바이어스에 임베딩이 되더라도 영상 분류 정확도에 영향이 거의 없음을 증명한다.

  • PDF

하이퍼큐브를 피터슨-토러스(PT) 네트워크에 임베딩 (Embedding Hypercube into Petersen-Torus(PT) Networks)

  • 서정현;이형옥;장문석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.577-580
    • /
    • 2008
  • 본 논문은 차원이 증가함에 따라 분지수가 증가하는 하이퍼큐브 연결망을 분지수가 고정인 피터슨-토러스(PT) 네트워크에 임베딩 가능함을 보였다. 하이퍼큐브 $Q_{log_2n^2+3}$을 PT(n,n)에 확장율 10/8, 연장율 1.5n+2 그리고 밀집율 4n에 임베딩 하였다. 확장율은 1에 근접하도록 사상알고리즘이 설계되었고, 밀집율과 연장율은 분지수가 증가하는 하이퍼큐브의 특성 때문에 O(n)에 비례한다.

토러스 구조와 하이퍼-토러스 구조 상호간 임베딩 정도의 분석 (An Analysis of the Degree of Embedding between Torus Structure and Hyper-Torus One)

  • 김종석;이형옥
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1116-1121
    • /
    • 2014
  • 메쉬 구조는 대표적인 상호연결망 중 하나로, VLSI 회로 설계 같은 분야에서 많이 이용되고 있다. 이러한 메쉬 구조에서 지름과 고장허용도를 개선한 연결망으로 토러스와 하이퍼-토러스 연결망이 있다. 본 논문에서는 토러스 구조 T(4k,2l)와 하이퍼-토러스 네트워크 QT(m,n) 사이의 임베딩을 분석한다. 토러스 T(4k,2l)는 QT(m,n)에 연장율 5, 밀집율 4, 확장율 1에 임베딩 가능하고, QT(m,n)은 T(4k,2l)에 연장율 3, 밀집율 3, 확장율 1에 임베딩 가능함을 보인다.

화자 검증을 위한 마스킹된 교차 자기주의 인코딩 기반 화자 임베딩 (Masked cross self-attentive encoding based speaker embedding for speaker verification)

  • 서순신;김지환
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.497-504
    • /
    • 2020
  • 화자 검증에서 화자 임베딩 구축은 중요한 이슈이다. 일반적으로, 화자 임베딩 인코딩을 위해 자기주의 메커니즘이 적용되어졌다. 이전의 연구는 마지막 풀링 계층과 같은 높은 수준의 계층에서 자기 주의를 학습시키는 데 중점을 두었다. 이 경우, 화자 임베딩 인코딩 시 낮은 수준의 계층의 영향이 감소한다는 단점이 있다. 본 연구에서는 잔차 네트워크를 사용하여 Masked Cross Self-Attentive Encoding(MCSAE)를 제안한다. 이는 높은 수준 및 낮은 수준 계층의 특징 학습에 중점을 둔다. 다중 계층 집합을 기반으로 각 잔차 계층의 출력 특징들이 MCSAE에 사용된다. MCSAE에서 교차 자기 주의 모듈에 의해 각 입력 특징의 상호 의존성이 학습된다. 또한 랜덤 마스킹 정규화 모듈은 오버 피팅 문제를 방지하기 위해 적용된다. MCSAE는 화자 정보를 나타내는 프레임의 가중치를 향상시킨다. 그런 다음 출력 특징들이 합쳐져 화자 임베딩으로 인코딩된다. 따라서 MCSAE를 사용하여 보다 유용한 화자 임베딩이 인코딩된다. 실험 결과, VoxCeleb1 평가 데이터 세트를 사용하여 2.63 %의 동일 오류율를 보였다. 이는 이전의 자기 주의 인코딩 및 다른 최신 방법들과 비교하여 성능이 향상되었다.