가짜 뉴스는 소셜 미디어와 같이 사용자가 상호작용하는 미디어 플랫폼에서 정보가 빠른 속도로 확산되는 이점을 가지는 오류 정보(misinformation)의 한 형태이다. 최근 가짜 뉴스의 증가로 인해 사회적으로 많은 문제가 발생하고 있다. 본 논문에서는 이러한 가짜 뉴스를 탐지하는 방법을 제안한다. 이전의 가짜 뉴스 탐지는 텍스트 분석을 사용한 연구가 주로 수행되었다. 본 연구는 소셜 미디어의 뉴스가 확산되는 네트워크에 초점을 두고, 네트워크 임베딩 방법인 DeepWalk 로 자질을 생성하고 로지스틱 회귀분석을 사용하여 가짜 뉴스를 분류한다. 인터넷에 공개된 뉴스 211개와 120만개의 뉴스 확산 네트워크 데이터를 사용한 가짜 뉴스 탐지에 대한 실험을 수행하였다. 연구 결과 텍스트 분석에 비하여 네트워크 임베딩을 사용한 가짜 뉴스 탐지의 정확도가 최소 1.7%에서 최대 10.6% 더 높게 나타났다. 또한, 텍스트 분석과 네트워크 임베딩을 결합한 가짜 뉴스 탐지는 네트워크 임베딩에 비해 정확도의 상승이 나타나지 않았다. 본 연구의 결과는 기업이나 조직은 온라인 상에서 확산되는 가짜 뉴스 탐지에 효과적으로 활용될 수 있다.
본 논문에서는 그래프 구조의 데이터에서 각 노드의 신호를 예측하는 연구를 진행하였다. 이를 위해 분석하고자 하는 그래프에 대해 연결 관계를 기반으로 각 노드에 비-유클리드 공간 상에서의 좌표를 부여하여 그래프의 공간적 임베딩을 얻은 뒤, 각 노드의 공간적 임베딩을 입력으로 받고 해당 노드의 신호를 예측하는 그래프 암시적 신경 표현 모델을 제안 하였다. 제안된 모델의 검증을 위해 네트워크형 데이터와 3차원 메시 데이터 두 종류의 그래프 데이터에 대하여 신호 학습, 신호 예측 및 메시 데이터의 초해상도 과정 실험들을 진행하였다. 전반적으로 기존의 그래프 암시적 신경 표현 모델과 비교하였을 때 비슷하거나 더 우수한 성능을 보였으며, 특히 네트워크형 그래프 데이터 신호 예측 실험에서 큰 성능 향상을 보였다.
최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.
본 논문에서는 완전이진트리의 3차원 메쉬로의 임베딩 문제를 다룬다. 링크 충돌을 2까지 허용하면서 최적크기의 메쉬에 임베딩하는 방법은 [1]에서 다루고 있으며, [2]에서는 최적크기의 1.27배의 메쉬로 임베딩하는 방법을 보여주고 있다. 본 논문에서 제안하는 임베딩 방법은 순위차원 라우팅을 사용하며 링크 충돌이 없는 방법으로, 약 1.125배의 최적확장을 넘지 않는다. 이 임베딩 방법은 링크의 충돌 혹은, 임베딩의 확장을 최소화한다는 기준에서 볼 때 기존의 임베딩 방법에 비해 향상된 결과이다.
딥러닝 기반의 심층 화자 임베딩 방식은 최근 문장 독립 화자 검증 연구에 널리 사용되고 있으며, 기존의 i-vector 방식에 비해 더 좋은 성능을 보이고 있다. 본 연구에서는 심층 화자 임베딩 방식을 발전시키기 위하여, 화자의 그룹 정보를 도입한 그룹기반 화자 임베딩을 제안한다. 훈련 데이터 내에 존재하는 전체 화자들을 정해진 개수의 그룹으로 비지도 클러스터링 하며, 고정된 길이의 그룹 임베딩 벡터가 각각의 그룹을 대표한다. 그룹 결정 네트워크가 각 그룹에 대응되는 그룹 가중치를 출력하며, 이를 이용한 그룹 임베딩 벡터들의 가중 합을 통해 집합 그룹 임베딩을 추출한다. 최종적으로 집합 그룹 임베딩을 심층 화자 임베딩에 더해주어 그룹기반 화자 임베딩을 생성한다. 이러한 방식을 통해 그룹 정보를 심층 화자 임베딩에 도입함으로써, 화자 임베딩이 나타낼 수 있는 전체 화자의 검색 공간을 줄일 수 있고, 이를 통해 화자 임베딩은 많은 수의 화자를 유연하게 표현할 수 있다. VoxCeleb1 데이터베이스를 이용하여 본 연구에서 제안하는 방식이 기존의 방식을 개선시킨다는 것을 확인하였다.
본 논문은 딥러닝 네트워크의 압축을 위한 양자화 오프셋의 바이어스 기법을 제안한다. 양자화는 32비트 정밀도를 갖는 가중치와 활성화 데이터를 특정 비트 이하의 정수로 압축한다. 양자화는 원 데이터에 스케일과 오프셋을 더함으로써 수행되므로 오프셋을 위한 합성곱 연산이 추가된다. 본 논문에서는 입력 활성화 데이터의 양자화 오프셋과 가중치의 합성곱의 출력은 바이어스에 임베딩될 수 있음을 보여준다. 이를 통해 추론 과정 중 오프셋의 합성곱 연산을 제거할 수 있다. 실험 결과는 오프셋의 합성곱이 바이어스에 임베딩이 되더라도 영상 분류 정확도에 영향이 거의 없음을 증명한다.
본 논문은 차원이 증가함에 따라 분지수가 증가하는 하이퍼큐브 연결망을 분지수가 고정인 피터슨-토러스(PT) 네트워크에 임베딩 가능함을 보였다. 하이퍼큐브 $Q_{log_2n^2+3}$을 PT(n,n)에 확장율 10/8, 연장율 1.5n+2 그리고 밀집율 4n에 임베딩 하였다. 확장율은 1에 근접하도록 사상알고리즘이 설계되었고, 밀집율과 연장율은 분지수가 증가하는 하이퍼큐브의 특성 때문에 O(n)에 비례한다.
메쉬 구조는 대표적인 상호연결망 중 하나로, VLSI 회로 설계 같은 분야에서 많이 이용되고 있다. 이러한 메쉬 구조에서 지름과 고장허용도를 개선한 연결망으로 토러스와 하이퍼-토러스 연결망이 있다. 본 논문에서는 토러스 구조 T(4k,2l)와 하이퍼-토러스 네트워크 QT(m,n) 사이의 임베딩을 분석한다. 토러스 T(4k,2l)는 QT(m,n)에 연장율 5, 밀집율 4, 확장율 1에 임베딩 가능하고, QT(m,n)은 T(4k,2l)에 연장율 3, 밀집율 3, 확장율 1에 임베딩 가능함을 보인다.
화자 검증에서 화자 임베딩 구축은 중요한 이슈이다. 일반적으로, 화자 임베딩 인코딩을 위해 자기주의 메커니즘이 적용되어졌다. 이전의 연구는 마지막 풀링 계층과 같은 높은 수준의 계층에서 자기 주의를 학습시키는 데 중점을 두었다. 이 경우, 화자 임베딩 인코딩 시 낮은 수준의 계층의 영향이 감소한다는 단점이 있다. 본 연구에서는 잔차 네트워크를 사용하여 Masked Cross Self-Attentive Encoding(MCSAE)를 제안한다. 이는 높은 수준 및 낮은 수준 계층의 특징 학습에 중점을 둔다. 다중 계층 집합을 기반으로 각 잔차 계층의 출력 특징들이 MCSAE에 사용된다. MCSAE에서 교차 자기 주의 모듈에 의해 각 입력 특징의 상호 의존성이 학습된다. 또한 랜덤 마스킹 정규화 모듈은 오버 피팅 문제를 방지하기 위해 적용된다. MCSAE는 화자 정보를 나타내는 프레임의 가중치를 향상시킨다. 그런 다음 출력 특징들이 합쳐져 화자 임베딩으로 인코딩된다. 따라서 MCSAE를 사용하여 보다 유용한 화자 임베딩이 인코딩된다. 실험 결과, VoxCeleb1 평가 데이터 세트를 사용하여 2.63 %의 동일 오류율를 보였다. 이는 이전의 자기 주의 인코딩 및 다른 최신 방법들과 비교하여 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.