• Title/Summary/Keyword: 냉장고 소음

Search Result 72, Processing Time 0.039 seconds

Pattern Analysis of Noise Radiated from Household Refrigerator (가정용 냉장고에서 방사되는 소음의 패턴 분석)

  • Kong, Kyung-Soo;Jeong, Weui-Bong;Kim, Tae-Hoon;Shin, Dae-Sik;Ahn, Se-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.121-129
    • /
    • 2016
  • The noise pattern of a household refrigerator is dependent on the characteristics of its operating cycle which is repeated with a specific pattern depending on various parameters, such as room temperature and performance of its mechanical parts. Analysis of noise pattern is essential prior to evaluation of sound quality of a refrigerator. In this study, 14 units of refrigerator were classified into 4 types according to noise pattern and sort of mechanical part, which helps to analyze characteristics of refrigerator noise. Sound quality metrics(loudness, sharpness, roughness, and fluctuation strength) were calculated to compare noise pattern of the 4 types of refrigerator. The results of this study can be useful to decide noise performance of refrigerator.

System Vibration Analysis Using Component Synthesis Method (부분구조합성법을 이용한 구조물의 시스템적 진동해석)

  • 김석관;김성대;임기수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.136-140
    • /
    • 1992
  • 가전 제품을 비롯한 전기/전자 제품의 고부가가치화를 위해서는 제품 사용 환경의 쾌적함에 저해되는 요인인 진동소음의 발생을 최대한 억제하여야 한 다. 본 연구에서는 진동으로 인하여 발생하는 소음의 저하를 위한 연구의 일 환으로 부분 구조합성법을 이용하여 설계된 제품의 진동특성을 파악하고 진 동을 저하하기 위한 연구를 냉장고를 대상으로 수행하였다. 방진 마운트와 콤프레서 지지판의 최적 설계에 의하여 진동 및 소음의 저하에 기여함으로 써 적용한 연구 방법의 적합성이 인정되었으며 향후 다른 전기 전자 제품의 진동 소음 제어에도 기여할 수 있을 것으로 생각된다.

  • PDF

Active Control of Noise Transmitted through Ventilation Openings of the Machinery Room of Refrigerator (무부하 압축기에 의한 냉장고 기계실 소음의 능동제어)

  • Koo, Jung Mo;Jeong, Weui Bong;Kim, Tae Hoon;Hong, Chinsuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2016
  • The active control of noise generated by the compressor and transmitted out of the machine room through the windows is implemented based on the FIR filter. The machine room contains most of noise sources of electric home appliances, air-conditioners and refrigerators, for example. To actively reduce the noise from the machinery room. In this paper, the transfer function of the controller for minimization of the acoustic power transmitted through the windows is mathematically formulated. The transfer functions required for implementation of the active controller are the measured. The measurements are conducted in this initial stage under the operation of the compressor with no load. For improvement of the reliability of the transfer function of the compressor to the acoustic power, additional operational measurements are performed. The real time controller is implemented based on the FIR filter using the measured transfer functions and the performance of the active controller is estimated. Control performance is measured about 3 dB ~ 10 dB in reduction of the sound power at the peaks of the compressor noise.

Low frequency sound absorption improvement in refrigerator using multi perforated plate (다공판을 활용한 냉장고 저주파 흡음개선)

  • Ho-Jin, Kwon;Hyoung-Jin, Kim;Kyungjun, Song;Tae-hoon, Kim;Junhyo, Koo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.723-729
    • /
    • 2022
  • In this study, the multi perforated plate is used to reduce the compressor noise in the low frequency band inside the refrigerator machine room. To predict the sound absorption results, the impedance of the sound absorption material is measured. Using the measured impedance results, it is confirmed that the results used for FEM analysis is almost similar to the experimental values. The sound-absorbing structure that can operate in the target frequency band inside the refrigerator machine room is designed by controlling the hole diameter and arrangement in the perforated plate. The effect of reducing noise in the low frequency band is confirmed by applying perforated plate-based sound absorbing structures to the machine room.

Computation of Internal BPF Noise of Axial Circulating Fan in Refrigerators (냉장고 내 냉기순환용 축류홴에 의한 내부 블레이드-통과-주파수 소음 예측)

  • Lee, Seung-Yub;Heo, Seung;Cheong, Cheol-Ung;Kim, Seok-Ro;Seo, Min-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.454-461
    • /
    • 2009
  • Internal aeroacoustics of an axial fan used for circulating cold air in refrigerators are computed by using the hybrid method where CFD, acoustic analogy and BEM techniques are utilized. The unsteady flow field around the axial fan is predicted by solving the incompressible RANS equations with the conventional CFD techniques. Then, main noise sources are extracted from this unsteady flow field predictions using Acoustic Analogy. Lastly, BPF noise generated from an axial fan are predicted using these modeled sources combined with the tailed Green function techniques, which are numerically solved by the BEM technique. This hybrid model is validated by comparing the prediction with the experiment. Then, parameter studies are carried out, which suggest a capability of the current method as a design tool for the low-noise of the current axial fan system in a refrigerator.

Just noticeable difference of autocorrelation function (ACF) parameters of refrigerator noise (냉장고 소음 ACF 요소의 최소인지한계량 조사)

  • You, Jin;Jeong, Choong-Il;Jeon, Jin-Yong;Cho, Moon-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1442-1445
    • /
    • 2007
  • Just noticeable differences (jnds) of autocorrelation function (ACF) parameters - Phi (0), Tau 1 and Phi 1 - of household refrigerator noise were investigated by psychoacoustical analyses. Phi (0) of five refrigerators' noise was changed with equal (${\pm}$) interval level of 0.5-1.0 dB up to five intervals by manipulating sound pressure level of the noise. Tau 1 and Phi 1 were varied with equal (${\pm}$) interval of around 0.10 ms and 0.02, respectively. Pitch shifting and strengthen methods were applied for the Tau 1 and Phi 1 variations. As results of subjective evaluations, about 2.0 dB was shown as jnd of Phi (0). The values of 0.30 ms and 0.06 were found as jnds of Tau 1 and Phi 1, respectively. The jnd results of each ACF parameter can be applied to explain substantial amount of sound quality (SQ) enhancement in the SQ prediction indices which were proposed in the authors' previous study [Sato et al. (2007) J. Acoust. Soc. Am.].

  • PDF