This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.
The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.
In this paper, a new technology to obtain electronic grade, highly pure carbon dioxide by using membrane and liquefied natural gas (LNG) cold heat assisted cryogenic distillation has been proposed. PRO/II with PROVISION release 2023.1 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function to predict pure component vapor pressure versus temperature more accurately was selected for the modeling of the membrane and cryogenic distillation process. Advantage of using membrane separation instead of selecting absorber-stripper configuration for the concentration of carbon dioxide was the reduction of carbon dioxide capture cost.
한국초전도저온공학회 1999년도 제1회 학술대회논문집(KIASC 1st conference 99)
/
pp.165-168
/
1999
Thermodynamic cycle analysis has been performed for the power generation systems to utilize the cold energy of liquefied natural gas (LNG). Among many possible configurations of the cycle, the open Rankine cycle, the closed Rankine cycle, and the closed Brayton cycle are selecte for the analysis because of their practical importance. The power output per unit mass of LNG has been analytically calculated for various design parameters. The optimal conditions for the parameters to maximize the power output are presented and some of the design considerations are discussed.
LNG (Liquefied Natural Gas)기지의 LNG 저장탱크에서 BOG (Boil Off Gas)가 약 0.5 vol%/day로 자연적으로 생성된다. 이를 회수하기 위해서 기존에는 LNG와 BOG를 1:12의 질량비로 직접 접촉시켜 액화시켰다. 이 공정은 단순하지만 하절기에는 LNG 사용량 저하로 인해 공정운영의 어려움이 있다. 이러한 단점을 보완하기 위해 대안된 LNG 냉열을 사용하는 간접접촉방식을 HYSYS를 이용하여 분석해보고 직접접촉방식과 BOG 재액화 효율비교를 통해 분석하여 유리한 공정을 도출하였다.
Journal of Advanced Marine Engineering and Technology
/
제40권3호
/
pp.174-179
/
2016
해양의 환경오염을 줄이기 위하여 LNG 운송선박, 벙커링 선박 및 LNG를 연료로 추진되는 선박의 건조가 증가하고 있다. 이러한 LNG 선박의 저장탱크들은 외부로부터의 열유입으로 증발가스가 지속적으로 발생하고 있으며, 최근 국내 조선사들은 이 BOG를 재액화하여 회수하는 장치를 개발하여 보급하고 있다. 본 연구에서는 부분재액화 처리장치들의 이론적 최대 재액화 수율을 분석하고 재액화 수율에 미치는 영향 인자들을 비교하였다. 해석결과, BOG와 플래시 가스가 보유한 냉열을 열교환으로 간접 이용하는 부분재액화 처리장치는 최대 48.7%가 되었으며, BOG와 플래시 가스가 혼합 합체되어 냉열이 직접 이용되는 부분재액화 처리장치는 최대 41%로 해석되었다. 또한 액체 수율에 크게 영향을 미치는 인자로는 열교환기의 효율로 열교환기의 성능과 단열이 매우 중요한 것임을 알 수 있다.
본 연구에서는 현열 형태의 저온 열원과 LNG의 냉열을 이용하는 복합 동력 생산시스템에 대한 열역학적 성능 해석을 수행하였다. 시스템의 작동유체로서 암모니아-물의 비공비 혼합물을 고려하였으며 재생기가 없는 기본 사이클과 있는 재생 사이클의 경우를 비교 해석하였다. 작동유체의 암모니아 농도나 응축 온도에 따라 시스템의 순생산일, 엑서지 파괴, 열효율이나 엑서지 효율 등에 미치는 다양한 영향에 대해 분석하고 논의하였다. 해석 결과는 시스템의 성능 특성이 작동유체의 암모니아 농도나 응축 온도에 따라 민감하게 변화하며, 열원유체 단위질량당 순생산일은 기본 사이클이 유리하나 열효율이나 엑서지 효율은 재생 사이클이 유리하다는 사실을 보여준다.
As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.
The power generation system using cold energy, which evolves in a large amount during the vaporization process of the liquefied natural gas, was designed in favor of the Rankine cycle with a mixed refrigerant as the working fluid. In this study it is intended to identify the allowable limits of the working fluid composition in respect of equipment safety in the Rankine cycle-type power generation system driven by the cold energy. The thermodynamic properties of the working fluid, which is a hydrocarbon mixture, were calculated with the Peng-Robinson model. In the steady state simulation of the power generation system by using a commercial tool Aspen HYSYS, the feed conditions of LNG Test Bed Train No.1 along with some necessary assumptions were incorporated. The results indicated that deterioration of the mechanical performance of the equipment as well as its safety would be brought about if contents of $C_2H_6$ and $C_3H_8$ in the mixture become, respectively, too high or too low.
국내 천연가스 공급계통에 있어서 냉열 에너지의 동력 회수에 관한 엑서지 해석 방법을 개발하므로, 에너지 시스템의 유효이용 방안 모색과 함께 엑서지 해석의 효용성을 증명한다. 현재 운영 중인 (1) 가열기에 의한 가열-PVC 감압 공급 시스템, (2) 감압과정에 팽창기를 도입하는 가열-팽창일-PVC 감압 공급 시스템, (3) 가열기 없이 팽창기를 도입한 팽창기-PVC 감압의 경우에 대해 엑서지 해석을 수행한다. 시뮬레이션은 NG 공급 시스템에 팽창기를 도입을 모델링하고, 유입 NG의 압력과 온도, 출구 NG의 압력과 온도에 대해 이루어 졌다. 팽창기로부터 얻을 수 있는 전력생산량은 팽창기 입출구의 NG 압력비가 클수록 많아진다. 그러나 압력비가 커면 온도의 하강이 심해져, 팽창기 입구에서의 가스 가열이 필요하며 이에 따른 연료소비량도 압력비 증가와 함께 상승한다. 엑서지 해석은 시스템 내 에너지 손실 위치와 양을 알 수 있다. 해석결과 가열-PVC 감압의 공급 시스템에서 PCV에 의해 소멸되는 엑서지가 가장 높았으며, 이 소멸 엑서지는 팽창기 설치를 통해 동력을 회수하므로 줄일 수 있다. 팽창기 입구에서 NG의 온도 증가는 엑서지 회수율을 향상시킬 수 있지만, NG의 열손실로 인해 팽창기의 기계 엑서지 효율은 감소한다. 이들 결과로 부터 엑서지 해석의 효용성을 알 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.