DOI QR코드

DOI QR Code

Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy

LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석

  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • HAN, CHUL HO (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과) ;
  • 한철호 (금오공과대학교 기계시스템공학과)
  • Received : 2020.03.24
  • Accepted : 2020.04.30
  • Published : 2020.04.30

Abstract

This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

Keywords

References

  1. M. Romero Gomez, R. Ferreiro Garcia, J. Romero Gomez, and J. Carbia Carril, "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process", Renew. Sustain. Energy Rev. Vol. 38, 2014, pp. 781-795, doi: https://doi.org/10.1016/j.rser.2014.07.029.
  2. K. H. Kim, J. M. Ha, and K. C. Kim, "Effects of working fluids on the performance characteristics of organic Rankine cycle (ORC) using LNG cold energy as heat sink", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 2, 2014, pp. 200-208, doi: https://doi.org/10.7316/khnes.2014.25.2.200.
  3. K. H. Kim, J. M. Ha, and K. C. Kim, "Thermodynamic performance characteristics of organic Rankine cycle (ORC) using LNG cold energy", Journal of the Korean Institute of Gas, Vol. 18, No. 2, 2014, pp. 41-47, doi: https://doi.org/10.7842/kigas.2014.18.2.41.
  4. Y. Liu, J. Han, and H. You, "Performance analysis of a CCHP system based on SOFC/GT/$CO_2$ cycle and ORC with LNG cold energy utilization", Int. J. Hydrogen Energy, Vol. 44, No. 56, 2019, pp. 29700-29710, doi: https://doi.org/10.1016/j.ijhydene.2019.02.201.
  5. H. Habibi, M. Zoghi, A. Chitsaz, K. Javaherd, and M. Ayazpour, "Thermo-economic analysis and optimization of combined PERC - ORC - LNG power system for diesel engine waste heat recovery", Energy Convrs. Mgmt., Vol. 173, 2018, pp. 613-625, doi: https://doi.org/10.1016/j.enconman.2018.08.005.
  6. Z. Pan, L. Zhang, Z. Zhang, L. Shang, and S. Chen, "Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and $CO_2$ capture", J. Natural Gas Science Eng., Vol. 46, 2017, pp. 188-198, doi: https://doi.org/10.1016/j.jngse.2017.07.018.
  7. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16, doi: https://doi.org/10.1016/j.tca.2011.11.028.
  8. F. Sun, W. Zhou, Y. Ikegami, K. Nakagami, and X. Su, "Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)", Renewable Energy, Vol. 66, 2014, pp. 268-279, doi: https://doi.org/10.1016/j.renene.2013.12.015.
  9. Y. Dai, J. Wang, and L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery", Energy Convers. Manag., Vol. 50, No. 3, 2009, pp. 576-582, doi: https://doi.org/10.1016/j.enconman.2008.10.018.
  10. I. H. Choi, S. Lee, Y. Seo, and D. Chang, "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery", Energy, Vol. 61, 2013, pp. 179-195, doi: https://doi.org/10.1016/j.energy.2013.08.047.
  11. W. J. Rao, L. J. Zhao, C. Liu, and M. G. Zhang, "A combined cycle utilizing LNG and low-temperature solar energy", Appl. Therm. Eng., Vol. 60, No. 1-2, 2013, doi: https://doi.org/10.1016/j.applthermaleng.2013.06.043.
  12. M. Kamalinejad, M. Amidpour, and S. M. M. Naeynian, "Thermodynamic design of a cascade refrigeration system of liquefied natural gas by applying mixed integer non-linear programming", Chinese J. Chem. Eng., Vol. 23, No. 6, 2015, pp. 998-1008, doi: https://doi.org/10.1016/j.cjche.2014.05.023.
  13. M. Soffiato, C. A. Frangopoulos, G. Manente, S. Rech, and A. Lazzaretto, "Design optimization of ORC systems for waste heat recovery on board a LNG carrier". Energy Convrs. Manag., Vol. 92, 2015, pp. 523-534, doi: https://doi.org/10.1016/j.enconman.2014.12.085.
  14. X. Xue, C. Guo, X. Du, L. Yang, and Y. Yang, "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery", Energy, Vol. 83, 2015, pp. 778-787, doi: https://doi.org/10.1016/j.energy.2015.02.088.
  15. H. Sun, H. Zhu, F. Liu, and H. Ding, "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid". Energy, Vol. 70, 2014, pp. 317-324, doi: https://doi.org/10.1016/j.energy.2014.03.128.
  16. Y. Lee, J. Kim, U. Ahmed, C. Kim, Y. W. Lee, "Multi-objective optimization of organic Rankine cycle (ORC) design considering exergy efficiency and inherent safety for LNG cold energy utilization", J. Loss Prevention in the Process Industries, Vol. 58, 2019, pp. 90-101, doi: https://doi.org/10.1016/j.jlp.2019.01.006.
  17. H. Y. Lee and K. H. Kim, "Energy and exergy analyses of a combined power cycle using the organic rankine cycle and the cold energy of liquefied natural gas", Entropy, Vol. 17, No. 9, 2015, pp. 6412-6432, doi: https://doi.org/10.3390/e17096412.
  18. K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, No. 1, 2014, pp. 50-60, doi: https://doi.org/10.1016/j.applthermaleng.2014.04.064.
  19. T. Yang, G. J. Chen, W. Yan, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: application up to the near-critical region", Chem. Eng. J., Vol. 67, No. 1, 1997, pp. 27-36, doi: https://doi.org/10.1016/S1385-8947(97)00012-0.
  20. J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibrium, Vol. 224, No. 2, 2004, pp. 213-219, doi: https://doi.org/10.1016/j.fluid.2004.05.007.
  21. K. H. Kim, "Study of working fluids on thermodynamic performance of organic Rankine cycle (ORC)", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 2, 2011, pp. 223-231, doi: https://doi.org/10.7316/khnes.2011.22.2.223.