DOI QR코드

DOI QR Code

Thermodynamic Performance Analysis of Ammonia-Water Power Generation System Using Low-temperature Heat Source and Liquefied Natural Gas Cold Energy

저온 열원과 LNG 냉열을 이용하는 암모니아-물 동력 사이클의 열역학적 성능 해석

  • Kim, Kyoung Hoon (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology) ;
  • Kim, Kyung Chun (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 김경훈 (금오공과대학교 기계공학과) ;
  • 김경천 (부산대학교 기계공학부)
  • Received : 2014.01.09
  • Accepted : 2014.04.23
  • Published : 2014.06.01

Abstract

In this study, a thermodynamic analysis was carried out for a combined power generation system using a low-temperature heat source in the form of sensitive energy and liquefied natural gas cold energy. An ammonia-water mixture, which is a zeotropic mixture, was used as the working fluid, and systems with and without a regenerator were comparatively analyzed. The effects of the mass fraction of ammonia and the condensation temperature of the working fluid on the system variables, including the net work production, exergy destruction, and thermal and exergy efficiencies, are analyzed and discussed. The results show that the performance characteristics of the system varied sensitively with the ammonia concentration or condensation temperature of the working fluid. The system without regeneration was found to be better in relation to the net work per unit mass of the source fluid, whereas the system with regeneration was better in relation to the thermal or exergy efficiency.

본 연구에서는 현열 형태의 저온 열원과 LNG의 냉열을 이용하는 복합 동력 생산시스템에 대한 열역학적 성능 해석을 수행하였다. 시스템의 작동유체로서 암모니아-물의 비공비 혼합물을 고려하였으며 재생기가 없는 기본 사이클과 있는 재생 사이클의 경우를 비교 해석하였다. 작동유체의 암모니아 농도나 응축 온도에 따라 시스템의 순생산일, 엑서지 파괴, 열효율이나 엑서지 효율 등에 미치는 다양한 영향에 대해 분석하고 논의하였다. 해석 결과는 시스템의 성능 특성이 작동유체의 암모니아 농도나 응축 온도에 따라 민감하게 변화하며, 열원유체 단위질량당 순생산일은 기본 사이클이 유리하나 열효율이나 엑서지 효율은 재생 사이클이 유리하다는 사실을 보여준다.

Keywords

References

  1. Spiecker, S. and Weber, C., 2014, "The Future of the European Electricity System and the Impact of Fluctuating Renewable Energy - A Scenario Analysis," Energy Policy, Vol. 65, pp. 185-197. https://doi.org/10.1016/j.enpol.2013.10.032
  2. Prisyazhniuk, V. A., 2008, "Alternative Trends in Development of Thermal Power Plant," App. Therm. Eng., Vol. 28, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
  3. Nowak, W., Stachel, A. A. and Borsukiewicz-Gozdur, A., 2008, "Possibilities of Implementation of a Absorption Heat Pump in Realization of the Clausius-Rankine Cycle in Geothermal Power Station, " App. Therm. Eng., Vol. 28, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
  4. Bao, J. and Zhao, L., 2013, "A Review of Working Fluid and Expander Selections for Organic Rankine Cycle," Renewable and Sustainable Energy Reviews, Vol. 24, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  5. Quoilin, S., Broek, M. V. D., Declaye, S., Dewallef, P. and Lemort, V., 2013, "Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems," Renewable and Sustainable Energy Reviews, Vol. 22, pp. 164-186.
  6. Kim, K. H., 2013, "Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle," Trans. Korean Soc. Mech. Eng. B, Vol. 37, pp. 1137-1145. https://doi.org/10.3795/KSME-B.2013.37.12.1137
  7. Ibrahim, O. M., 1996, "Design Considerations for Ammonia-Water Rankine Cycle," Energy, Vol. 21, pp. 835-841. https://doi.org/10.1016/0360-5442(96)00046-1
  8. Ibrahim, O. M. and Klein, S. A., 1996, "Absorption Power Cycles," Energy, Vol. 21, pp. 21-27. https://doi.org/10.1016/0360-5442(95)00083-6
  9. Zamfirescu, C. and Dincer, I., 2008, "Thermodynamic Analysis of a Novel Ammonia-Water Trilateral Rankine Cycle," Thermochimica Acta, Vol. 477, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
  10. Roy, P., Desilets, M., Galanis, N., Nesreddine, H. and Cayer E., 2010, "Thermodynamic Analysis of a Power Cycle Using a Low-Temperature Source and a Binary $NH_3-H_2O$ Mixture as Working Fluid," Int. J. Thermal Sci., Vol. 49, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  11. Wagar, W. R., Zamfirescu, C. and Dincer, I., 2010, "Thermodynamic Performance Assessment of an Ammonia- Water Rankine Cycle for Power and Heat Production," Energy Conv. Mgmt., Vol. 51, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
  12. Kim K. H., Han C. H., Kim K., 2012, "Effects of Ammonia Concentration on the Thermodynamic Performances of Ammonia-Water Based Power Cycles," Thermochimica Acta, Vol. 530, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  13. Kim, K. H., Han, C. H. and Kim, K., 2013, "Comparative Exergy Analysis of Ammonia-Water Based Rankine Cycles with and Without Regeneration," Int. J. Exergy, Vol. 12, pp. 344-361. https://doi.org/10.1504/IJEX.2013.054117
  14. Kim, K. H., Ko, H. J. and Kim, K., 2014, "Assessment of Pinch Point Characteristics in Heat Exchangers and Condensers of Ammonia-water Based Power Cycles," Applied Energy, Vol. 113, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
  15. International Energy Agency, 2012, "Golden Rules for a Golden Age of Gas World Energy Outlook Special Report on Unconventional Gas."
  16. Roszak, E. A. and Chorowski, M., 2013, "Exergy Analysis of Combined Simultaneous Liquid Natural Gas Vaporization and Adsorbed Natural Gas Cooling," Fuel, vol. 111, pp. 755-762. https://doi.org/10.1016/j.fuel.2013.03.074
  17. Kim, T. S., Ro, S. T., Lee, W. I. and Kauh, S. K., 1999, "Performance Enhancement of a Gas Turbine using LNG Cold Energy," Trans. Korean Soc. Mech. Eng. B, Vol. 25, pp. 653-660.
  18. Tsatsaronis, G. and Morosuk, T., 2010, "Advanced Exergetic Analysis of a Novel System for Generating Electricity and Vaporizing Liquefied Natural Gas," Energy, Vol. 35, pp. 820-829. https://doi.org/10.1016/j.energy.2009.08.019
  19. Miyazaki, T., Kang, Y. T., Akisawa, A. and Kashiwagi, T., 2000, "A Combined Power Cycle using Refuse Incineration and LNG Cold Energy," Energy, Vol. 25, pp. 639-655. https://doi.org/10.1016/S0360-5442(00)00002-5
  20. Shi, X. and Che, D., 2009, "A Combined Power Cycle Utilizing Low-Temperature Waste Heat and LNG Cold Energy," Energy, Vol. 50, pp. 567-575.
  21. Kim, K. H., Oh, J. H. and Ko, H. J., 2012, "Performance Analysis of a Combined Power Cycle Utilizing Low-Temperature Heat Source and LNG Cold Energy," Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, pp. 382-389. https://doi.org/10.7316/KHNES.2012.23.4.382
  22. Wang, J., Yan, Z. and Wang, M., 2013, "Thermodynamic Analysis and Optimization of an Ammonia- Water Power System with LNG (Liquefied Natural Gas) as Its Heat Sink," Energy, Vol. 50, pp. 513-522. https://doi.org/10.1016/j.energy.2012.11.034
  23. Deng, S. M., Jin, H. G., Cai, R. X. and Lin, R. M., 2004, "Novel Cogeneration Power System with Liquefied Natural Gas (LNG) Cryogenic Exergy Utilization," Energy, Vol. 29, pp. 497-512. https://doi.org/10.1016/j.energy.2003.11.001
  24. Lee, G. S., 2005, "Design and Exergy Analysis for a Combined Cycle Using LNG Cold/Hot Energy," Korean J. Air-conditioning Refrigeration Eng., Vol. 17, pp. 285-296.
  25. Lu, T. and Wang, K. S., 2009, "Analysis and Optimization of a Cascading Power Cycle with Liquefied Natural Gas (LNG) Cold Energy Recovery," App. Therm. Eng., Vol. 29, pp. 1478-1484. https://doi.org/10.1016/j.applthermaleng.2008.06.028
  26. Szargut, J. and Szczygiel, I., 2009, "Utilization of the Cryogenic Exergy of Liquid Natural Gas (LNG) for the Production of Electricity," Energy, Vol. 34, pp. 827-837. https://doi.org/10.1016/j.energy.2009.02.015
  27. Choi, I. H., Lee, S. I. and Seo, Y. T., 2013, "Analysis and Optimization of Cascade Rankine Cycle for Liquefied Natural Gas Cold Energy Recovery," Energy, Vol. 61, pp. 179-195. https://doi.org/10.1016/j.energy.2013.08.047
  28. Xu, F. and Goswami, D. Y., 1999, "Thermodynamic Properties of Ammonia-Water Mixtures for Power Cycle application," Energy, Vol. 24, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9
  29. Yang, T., Chen, G. J. and Guo, T. M., 1997, "Extension of the Wong-Sandler Mixing Rule to the Three-Parameter Patel-Teja Equation of State: Application up to the near-Critical Region," Chem. Eng. J, Vol. 67, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0