• Title/Summary/Keyword: 냉각율

Search Result 355, Processing Time 0.023 seconds

고화 피막층 형성이 있는 노심용융물의 자연대류 열전달

  • 박래준;김상백;김희동;최상민;조재선;정창현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.683-688
    • /
    • 1997
  • 원전의 중대사고 발생시 형성될수 있는 노심용융물의 고화피막층을 동반하는 용융물의 자연대류 열절달 특성에 대한 실험결과를 정밀 분석하고, 이에 대한 해석적 연구를 수행하였다. 본 연구대상 실험은 종횡비가 작은 경우와 큰 경우에 대하여 용융물을 자연대류와 강제대류로서 냉각하는 조건에서 경계조건에 따른 용융물의 피막층 두께를 측정하였고, 피막층 주변의 열전달량을 측정ㆍ분석한 것이다. 실험결과를 정밀 분석한 결과, 용융물의 고화 피막층 형성이 용융물의 자연대류 열전달양에 많은 영향을 미쳤으며, 종횡비가 큰 경우는 냉각 조건도 자연대류 열전달 양에 다소 영향을 미치는 것으로 나타났다. 또한 고화층 두께 증가에 따른 종횡비 감소는 자연대류 열전달양 감소율을 작게하는 것으로 나타났다. 피막층 형성이 있는 용융물의 자연대류 열전달 해석 결과, 실험에서의 열손실 때문에 용융물의 고화 피막층 두께가 실험결과보다 다소 작게 나타났으며, 자연대류 열전달 흐름이 피막층 형성에 미치는 것으로 나타났다.

  • PDF

광학탑재체 냉각유닛 열완충질량의 효과 분석

  • Jang, Su-Yeong;Lee, Deok-Gyu;Lee, Eung-Sik;Yeon, Jeong-Heum;Lee, Seung-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.50.2-50.2
    • /
    • 2009
  • 지구관측위성의 광학탑재체 내부에 장착된 초점면결상장치(FPA, Focal Plane Assembly)는 영상촬영시 많은 열을 발생하며, 최상성능획득을 위해서는 온도가 좁은 온도범위 내에서 유지되어야 한다. 초점면결상장치가 짧은 시간 동안 많은 열을 발생할 때, 이를 효과적으로 냉각시키기 위해 보통 히트파이프와 복사방열판을 이용한다. 이번 연구에서는 초점면결상장치의 최대상승온도를 낮추고, 영상촬영대기시 최적온도유지를 위한 히터작동율을 낮추기 위해 초점면결상장치와 복사방열판 사이에 열완충질량(TBM, Thermal Buffer Mass)을 적용하였는데, 이를 통해 얻을 수 있는 열설계 개선효과에 대해서 기술한다.

  • PDF

Electrical Measurement of SOx Dew Point (SOx노점의 전기적 측정)

  • Chun, Y.N.;Yong, K.J.;Chae, J.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.600-610
    • /
    • 1995
  • When combustion gas is cooled down below the dew point of sulfuric acid vapor in the heat recovery systems, condensation occurs. Since the condensed sulfuric acid solution causes low-temperature corrosion in materials, it is important to measure the SOx dew point by electric measurement. In this study, two kinds of probes having electric gaps of 1mm or 2mm were used. and experiments were carried out by the parameters of sulfuric acid vapor and water vapor concentration. The changes of electric current caused by sulfuric acid condensed on the surface of probe according to the cooling rate and the probe head surface temperature were sudied. The opimum cooling rate was decreased with the increasing of water vaper concentration regardless of sulfuric acid concentration. The sensitivity of electric current is improved for the narrower gap(1mm) of ring electrodes, but it rarely affects the SOx dew point measuring of different probes according to the change of cooling rate.

  • PDF

Effects of Cooling Rate of Pre-heated Substrate on C-Axis Orientation of ZnO Prepared by RF Sputter Deposition (RF 스퍼터를 이용하여 ZnO 증착 시 기판의 냉각율이 박막의 c-축 배향성에 미치는 영향)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.560-564
    • /
    • 2006
  • ZnO thin films were prepared by RF magnetron sputter deposition on p-Si(100) wafer with various cooling rates of substrate temperature such as the substrates were pre-heated to $400^{\circ}C$ before the deposition and then cooled down naturally or slowly to $300^{\circ}C,\;200^{\circ}C,\;100^{\circ}C$, and R.T. by the temperature controller during the deposition. Crystalline and micro-structural characteristics of the films were investigated by XRD and SEM. ZnO films which cooled down naturally or slowly by the temperature controller during the deposition, especially the film were deposited with cooling down from $400^{\circ}C\;to\;200^{\circ}C$ slowly. showed the most outstanding c-axis preferred orientation.

Design and Application of Forced Cooling System in Steam Turbine (증기터빈 강제냉각 장치의 설계 및 적용)

  • 김효진;류승우;강용호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.25-32
    • /
    • 1998
  • The forced cooling system is designed to shorten the overhaul time of steam turbine, which is important in view of economic concern of utility companies, Forced cooling of the hot turbine is achieved by suction of air flow into the turbine after the turbine shuts down. The heat transfer process by suction of air flow can cause thermal stress due to the thermal gradients. In this paper, the analysis of heat transfer is performed to calculate the air flow rate. Based on the prediction of cyclic fatigue damage and the experience, the cooling equipment is designed for shortening the cooling time of steam turbine.

  • PDF

Prediction of sacrificial material ablation rate by corium jet impingement (노심 용융물 제트 충돌에 의한 희생물질의 침식예측)

  • Suh, Jungsoo;Kim, Hangon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.21-26
    • /
    • 2014
  • EU-APR1400, the Korean nuclear reactor design for European market adopts a so-called core catcher for ex-vessel molten corium retention and cooling as a severe-accident mitigation system. Sacrificial material, which controls melt properties and modifies melt conditions favorable for corium cooling and retention, is usually employed to protect core catcher body from molten corium. Since molten corium can be ejected through a breach of a reactor pressure vessel and impinged on the sacrificial material with enhanced heat transfer at a severe accident, it is very important to predict ablation rate of sacrificial material due to corium jet impingement accurately for core catcher design. In this paper, sacrificial-material ablation model based on boundary layer theory is suggested and compared with the experimental results by KAERI.

Experimental Study of Cooling Performance Comparison of a 18650 Li-ion Unit Battery Module (Air Cooling vs. PCM-based Cooling) (18650 리튬-이온 단일 배터리 모듈의 냉각 성능 비교에 관한 실험적 연구(공기 냉각과 PCM 기반 냉각))

  • BAEK, SEOUNGSU;YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 2018
  • Li-ion battery system is regarded as one of the most potent power sources for electrified power-trains. For the Li-ion battery system to be widely adopted in automotive applications, the performance, safety, and cycle life issues need to be properly addressed. These issues are closely related to the thermal management of battery system. Especially, the effective cooling module design is the core part for the novel battery thermal management system development. In this paper, an experimental approach was carried out as a basic part of comprehensive battery thermal management research. The main goal of this paper is to present a comparison of two cooling systems (air cooling and phase change material (PCM) based cooling) of the unit 18650 battery module. The temperature rise with different battery discharge rate (c-rate) was mainly investigated and analyzed for two types of battery cooling systems. It is expected that this study can properly contribute to providing basic insights into the design of robust battery thermal management system for vehicular applications.

The effet of cooling rate on the residual stresses in the veneer ceramics of zirconia-ceramic restorations: a literature review (냉각속도가 지르코니아-도재 수복물의 전장도재 내 잔류응력에 미치는 효과에 관한 문헌고찰)

  • Chang, Jea-Seung;Kim, Sunjai
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2014
  • Nowadays, dental zirconia is widely used as a framework material for a fixed dental prosthesis as well as a single restoration. However, clinical studies have reported high incidence of veneer chipping of zirconia-ceramic restorations compared to that of metal-ceramics. Several factors were raised as the possible causes of veneer ceramic chipping, however, it is still in debate. Recently, residual stresses in the veneer ceramics after cooling process gathers attention as one possible cause of chipping and many studies reported that the rate of cooling significantly influenced the types and the amount of residual stress. The purpose of current review was to briefly describe the effect of cooling rate on the residual stress in zirconia-ceramics. It was also described that the different behavior of residual stress between zirconia-ceramics and metal-ceramics following different cooling rate.

A Technical Review of Endothermic Fuel Use on High Speed Flight Cooling (흡열연료를 이용한 고속비행체 냉각기술 동향)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • As hypersonic flight speeds and engines efficiencies increase, heat loads on an aircraft and it's engine increase. Because the temperature of the air flow is too high to cool the aircraft structure at hypersonic flight speeds, it is essential to use the aircraft fuel as the primary coolant. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. The endothermic reactions are improved by catalysts which change the extent of reaction and product distribution. At high temperature, liquid hydrocarbons would lead to coke formation that can reduce the effectiveness of heat exchanger and cause rapid degradation of the catalyst, thus endothermic capacity of endothermic fuels is limited to the temperature at which coke doesn't form. In this study, the essential cooling technologies by applying endothermic fuels and the properties of the endothermic fuels are described.

Melting of Al2O3 powder using the skull melting method (Skull melting법에 의한 Al2O3 파우더 용융)

  • Choi, Hyun-Min;Kim, Young-Chool;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.24-31
    • /
    • 2019
  • The current study demonstrates an efficient procedure to create ingots from $Al_2O_3$ powder using the skull melting method to use these ingots as a starting material in conventional methods for growing synthetic single-crystal sapphire. Dimension of the cold crucible was 24 cm in inner diameter and 30 cm in inner height, 15 kg of $Al_2O_3$ powder was completely melted within 1 h at an oscillation frequency of 2.75 MHz, maintained in the molten state for 3 h, and finally air-cooled. The areal density and components of the cooled ingot by parts were analyzed through scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The areal density and $Al_2O_3$ content of the ingot were related to the temperature distribution inside the cold crucible during high-frequency induction heating, and the area with high temperature was high tends to be high in areal density and purity.