A Technical Review of Endothermic Fuel Use on High Speed Flight Cooling

흡열연료를 이용한 고속비행체 냉각기술 동향

  • 김중연 (고려대학교 화공생명공학과) ;
  • 박선희 (고려대학교 화공생명공학과) ;
  • 전병희 (고려대학교 화공생명공학과) ;
  • 김성현 (고려대학교 화공생명공학과) ;
  • 정병훈 (국방과학연구소 1기술연구본부 5부) ;
  • 한정식 (국방과학연구소 1기술연구본부 5부)
  • Received : 2010.01.12
  • Accepted : 2010.03.28
  • Published : 2010.04.30

Abstract

As hypersonic flight speeds and engines efficiencies increase, heat loads on an aircraft and it's engine increase. Because the temperature of the air flow is too high to cool the aircraft structure at hypersonic flight speeds, it is essential to use the aircraft fuel as the primary coolant. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. The endothermic reactions are improved by catalysts which change the extent of reaction and product distribution. At high temperature, liquid hydrocarbons would lead to coke formation that can reduce the effectiveness of heat exchanger and cause rapid degradation of the catalyst, thus endothermic capacity of endothermic fuels is limited to the temperature at which coke doesn't form. In this study, the essential cooling technologies by applying endothermic fuels and the properties of the endothermic fuels are described.

극초음속 비행체의 속도증가와 엔진효율의 향상으로 비행체와 엔진의 열적부하가 증가하게 되었다. 극초음속 영역에서 공기흐름의 온도는 매우 높기 때문에 공냉방식을 이용한 냉각이 불가능하므로, 비행체 연료를 주 냉각제로써 이용하는 것은 필수적이다. 흡열연료(Endothermic fuels)는 열분해 또는 촉매분해와 같은 흡열반응(Endothermic reaction)을 통해 열을 흡수하는 액체 탄화수소 비행체 연료이다. 흡열반응은 촉매를 이용하여 전환율과 생성물 분포를 변화시킴으로써 개선될 수 있다. 고온의 액체 탄화수소는 코킹 생성을 유발하여 열교환기의 효율을 저하시키고 촉매 비활성을 촉진시킬 수 있기 때문에, 흡열연료의 흡열능력은 코킹생성(Coke formation)이 발생하기 전까지의 온도로 제한한다. 본 연구 에서는 흡열연료를 적용한 주요 냉각기술동향과 흡열연료의 특성이 기술되었다.

Keywords

References

  1. T. Edwards, M. L. Meyer "Propellant Requirements for Future Aerospace Propulsion Systems," AIAA2002-3870, 2002
  2. O. A. Powell et al., "Development of Hydrocarbon-Fueled Scramjet Engines: The Hypersonic Technology(HyTech) Program," J. Propul. Power. vol.17 No.6 2001, pp.1170-1176 https://doi.org/10.2514/2.5891
  3. 노진현, 원수희, Bernard Parent, 최정열, 변종렬, 임진식, "X-51A 스크램제트 기술 실증기 개발 프로그램 핵심기술," 한국추진공학회지, 제12권, 제5호, 2008, pp.79-91
  4. D. R. Sobel et al., "Hydrocarbon Fuel cooling Technologies for Advanced Propulsion," J. Eng. Gas. Turb. Power. vol.119, 1997, pp.344-351 https://doi.org/10.1115/1.2815581
  5. Z. Hai-long, et al., "Pd/HZSM-5 Coating Catalyst for Supercritical Cracking of Endothermic Fuel," J. Fuel. Chem. Tech., Vol.36 No.4, 2008, pp.462-467 https://doi.org/10.1016/S1872-5813(08)60029-8
  6. A. V. Korabelnikov et al., "High-Temperature Conversion of Liquid Hydrocarbons," AIAA2006-1442, 2006
  7. M. J. Castaldi et al., "Development of an Effective Endothermic Fuel Platform for Regeneratively Cooled Hypersonic Vehicles," AIAA2006-4403, 2006
  8. J. Bravo et al., "Wall Coating of a CuO/ZnO/Al2O3 Methanol Steam Reforming Catalyst for Micro-channel Reformers," Chem. Eng. J., Vol.101, 2004, pp.113-121 https://doi.org/10.1016/j.cej.2004.01.011
  9. D. T. Wickham et al., "Additives to Improve Fuel Heat Sink Capacity in Air/Fuel Heat Exchangers," J. Propul. Power. vol.24 No.1 2008, pp.55-63 https://doi.org/10.2514/1.24336
  10. Z. Wang et al., "Tributylamine as an Initiator for Cracking of heptane," Energ. Convers. Manage. vol.49, 2008, pp 1584-1594 https://doi.org/10.1016/j.enconman.2007.12.006
  11. T. Edwards, "Cracking and Deposition Behavior of Supercritical Hydrocarbon Aviation Fuels," Combust. Sci. Tech. vol.178, 2006, pp.307-334 https://doi.org/10.1080/00102200500294346
  12. E. Corporan et al., "Studies of Decalin as a Suppressor of Pyrolytic Deposits in JP-8+100," AIAA99-2213, 1999
  13. T. Edwards et al., "Fuel Composition Influence on Deposition in Endothermic Fuels," AIAA2006-7973, 2006
  14. L. J. Spadaccini et al., "Deposit Formation and Mitigation in Aircraft Fuels," J. Eng. Gas. Turb. Power. vol.123, 2001, pp.741-746 https://doi.org/10.1115/1.1383772
  15. H. Huang et al., "Fuel-Cooled Thermal Management for Advanced Aeroengines," J. Eng. Gas. Turb. Power. vol.126, pp.284-293, 2004 https://doi.org/10.1115/1.1689361