• Title/Summary/Keyword: 냉각방식

Search Result 396, Processing Time 0.229 seconds

FABRICATION OF Nb/Al SUPERCONDUCTING TUNNEL JUNCTION (Nb/Al SUPERCONDUCTING TUNNEL JUNCTION의 제작)

  • Cho, Sung-Ik;Park, Young-Sik;Park, Jang-Hyun;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Sug-Whan;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.481-492
    • /
    • 2004
  • We report the successful fabrication and I-V curve superconductivity test results of the Nb/Al-based superconducting tunnel junctions. STJs with side-lengths of 20, 40, 60 and $80{\mu}m$ were fabricated by deposition of polycrystalline Nb/Al/AlOx/Al/Nb 5-layer thin films incorporated on a 3-inch Si wafer. STJ was designed by $Tanner^{TM}$ L-Edit 8.3 program, and fabricated in SQUID fabrication facility, KRISS. S-layer STJ thin-films were fabricated using UV photolithography, DC magnetron sputtering, Reactive ion etching, and CVD(Chemical Vapor Deposition) techniques. Superconducting state test for STJ was succeeded in 4K with liquid helium cooling system. Their performance indicators such ie energy gap, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor were measured from I-V curve. Fabricated Nb/Al STJ shows $11\%$ higher FWHM energy resolution than genuine Nb STJ.

Simultaneous Determination of Caffeine, Theobromine and Theophylline in Tea Leaves by HPLC (HPLC를 이용한 다류 중 카페인, 테오브로민과 테오필린 동시분석 및 함량 조사)

  • Yun, Sang-Soon;Kim, Hyun;Jang, Su-Jin;Lim, Ho-Soo;Kim, Sheen Hee;Kim, Meehye
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.556-560
    • /
    • 2015
  • This study was aimed at investigating the natural occurrence of caffeine, theobromine, and theophylline in tea leaves. Sample clean-up was based on a simple solid phase extraction (SPE) treatment, and simultaneous analysis was performed by high performance liquid chromatography (HPLC). This method showed good results in terms of linearity, recovery, precision, limit of detection (LOD), and limit of quantitation (LOQ). The caffeine, theobromine, and theophylline contents of tea leaves (n = 228) ranged from 5.4 to 58.2 mg/g, from not detected to 11.2 mg/g, and from not detected to 0.7 mg/g, respectively. The results obtained in this study can be used as fundamental data of caffeine, theobromine, and theophylline contents in tea leaves.

Development of Various Pilot Scale's Ultrasound Systems and Sonodegradation of Naphthalene in Water (다양한 형태의 Pilot Scale 초음파 시스템 개발 및 나프탈렌 분해효율 검증)

  • Park, Jong-Sung;Lee, Ha-Yun;Han, Jong-Hun;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.281-288
    • /
    • 2011
  • Recently, researches that a variety of contaminants in water are removed by sonolysis technology with oxidation and pyrolysis process from cavitation were conducted. However, there are few studies for sonochemical treatment by a pilot-scale ultrasound system. This research focused on developing pilot-scale ultrasound systems, which could be an continuously effective treatment for a large volumes of contaminants, and demonstrating the feasibility of utilizing these systems to remove naphthalene from groundwater. V-120 type reactor was found to be 1.4~2.2 times higher effective than the normal type. A total of three different pilot scale's systems consisted of installing effluent and irrigation water in order to be a continuos system, including supplemental additives, and applying a V-120 type reactor and a external cooling cycle system. Naphthalene levels treated by three systems were lower than a recommended guideline of naphthalene for drinking water in EPA. Especially, the naphthalene removal efficiencies of PS1 and PS2 systems were over 97%. The pilot-scale continuous ultrasound clean-up system delivered over 84~95% naphthalene removal efficiency for treatment of 10~20 liter of groundwater. In addition, the ultrasound system could be successfully applied to the conditions of artificial and genuine groundwater contaminated with naphthalene.

A thermal-flow analysis of deaerator floor of power plant for reducing the radiative heat transfer effect (발전소 Deaerator floor의 복사효과 저감을 위한 열유동 해석)

  • Kim, Tae-Kwon;Ha, Ji-Soo;Choi, Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.476-481
    • /
    • 2016
  • Steam power generation is used to produce electricity through a generator that is connected to a steam turbine. As a result, the surface temperature of the deaerator is $70^{\circ}C$during the summer season, the surface temperature of the storage tank is $67^{\circ}C$, and the air temperature is $50^{\circ}C$. This environment is inappropriate for workers and instruments. Workers adjacent to the deaerator and storage tank in particular feel higher temperatures because of the radiative heat transfer effect. Therefore, we optimized the cooling conditions by computational analysis. Case 1 is the current shape of the power plant, Case 2 has additional insulation, and Case 3 has a radiation shield. Flow is caused by a temperature difference between the heat sources in the wall, and hot air is trapped in the right upper end. Based on the temperature contours and the maximum temperature of the surfaces, Case 2 was found to be the most efficient for reducing radiative heat transfer effects.

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Artificial Sea Ice Increasing to Mitigate Global Warming (지구 온난화 경감을 위한 인공해빙증가)

  • Byun, Hi-Ryong;Park, Chang-Kyun
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.501-511
    • /
    • 2015
  • This study suggests a method of alleviating global warming by the increase of the Earth surface albedo through Artificial Sea ice Increasing (ASI) over the Available Freezing Areas (AFA). The method is developed based on the fact that the large sea surface area in or near the Arctic and the Antarctic has no ice even though both water and air temperatures are below zero and the artificial sea ice generation is thus available. The mean energy of $0.85Wm^{-2}$, which was suspected of adding to the earth by the global warming effect was calculated to offset at once when the sea ice area about $4.09{\times}10^6km^2$ was additionally increased. In addition, three techniques for producing ice plates on the sea surface (using ships, installation apparatus, and floating matter such as Green Cell Foam) for ASI were proposed. According to the result of simple analysis using the energy balance model, when ASI was maximally operated only for 3 months (September, October, and November) over AFA, it is expected that the annual mean temperature of earth surface would be decreased about $0.11^{\circ}C$ in the following year. On the other hand, in case of generating the artificial sea ice in all four seasons, a risk of triggering snowball earth was detected.

Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier (제습기를 이용한 온실 포그냉방시스템의 효율향상)

  • Nam Sang Woon;Kim Kee Sung;Giacomelli Gene A.
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

A Study on the Comparison of Methods for the Measurement of Hydrocarbon Dew Point of Natural Gas (천연가스의 탄화수소 이슬점 측정방법 비교 연구)

  • Lee, Kang-Jin;Ha, Young-Cheol;Her, Jae-Young;Woo, Jin-Chun;Kim, Yong-Doo;Bae, Hyun-Kil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.496-502
    • /
    • 2015
  • Hydrocarbon dew point(HCDP), a property which is the most generally used for describing natural gas condensation, is a very important parameter of natural gas quality specifications. HCDP is strongly influenced by the concentration of the heavier hydrocarbon components, especially $C_6+$, so, along with compliance with gas quality specifications, build up of procedures for obtaining accurate HCDP is essential for gas transmission company, because hydrocarbon condensation present may cause serious operational and safety problems. This study has been carried out in an attempt to measure HCDP accurately by the automatic hydrocarbon dew point meter under the actual field conditions. Measured HCDP also has been compared with calculated HCDP using the composition determined by gas chromatograph and industry accepted equation of state at multiple pressures, along with the cricondentherm. The test results are 1) the automatic hydrocarbon dew point meter was able to measure stable HCDP continuously 2) the automatic hydrocarbon dew point meter has been performed reference measurement by pure propane with a known dew point from literature, and 3) A meaningful differences was observed when comparing the automatic hydrocarbon dew point meter and gas chromatograph results for synthetic standard gas mixtures and real gas mixtures.