Improvement of Cooling Efficiency in Greenhouse Fog System Using the Dehumidifier

제습기를 이용한 온실 포그냉방시스템의 효율향상

  • Nam Sang Woon (Department of Bioresources Engineering, Chungnam National University) ;
  • Kim Kee Sung (Department of Agricultural and Biosystems Engineering, Controlled Environment Agriculture Center, University of Arizona) ;
  • Giacomelli Gene A. (Department of Agricultural and Biosystems Engineering, Controlled Environment Agriculture Center, University of Arizona)
  • 남상운 (충남대학교 농업생명과학대학 생물자원공학부) ;
  • 김기성 (Arizona대학교 농업 및 생물시스템 공학과) ;
  • Published : 2005.03.01

Abstract

In order to provide fundamental data on utilization of dehumidifier in greenhouses, a condensing type dehumidifier using ground water as a coolant was developed and tested dehumidification performance. The developed dehumidifier was applied to greenhouse with fog cooling system and effect of dehumidification on improvement of evaporative cooling efficiency was analyzed. Results of the dehumidifier performance test showed that dehumidification using ground water as a coolant was sufficiently possible in fog cooling greenhouse. When the set point temperature of greenhouse cooling was $32^{\circ}C$ and as temperatures of ground water rose from $15^{\circ}C\;to\;18^{\circ}C,\;21^{\circ}C\;and\;24^{\circ}C$, dehumidification rates decreased by $17.7\%,\;35.4\%\;and\;52.8\%$, respectively. As flow rates of ground water reduced to $75\%\;and\;50\%$, dehumidification rates decreased by $12.1\%\;and\;30.5\%$, respectively. Cooling efficiency of greenhouse equipped with fog system was distinctly improved by artificial dehumidification. When the ventilation rate was 0.7 air exchanges per minute, dehumidification rates of the fog cooling greenhouse caused by natural ventilation were 53.9%-74.4% and they rose up to 75.4%-95.9% by operating the dehumidifier. In case of using the ground water of $18^{\circ}C$ and flow rate of design condition, it was analyzed that whole fog spraying water can be dehumidified even if the ventilation rate is 0.36 exchanges per minute. As a utilization of dehumidifier, it is possible to improve cooling efficiency of fog system in naturally ventilated greenhouses.

본 연구는 온실에서의 제습장치 이용에 관한 기초자료를 제공할 목적으로 지하수를 냉매로 하는 열교환기 방식의 제습장치를 제작하여 제습성능을 시험하고, 포그냉방시스템을 설치한 온실에 적용하여 제습이 증발냉각효율의 향상에 미치는 영향을 분석하였으며, 그 결과를 요약하면 다음과 같다. 제습기 성능실험 결과 지하수를 냉매로 이용할 경우 포그냉방시스템을 적용한 온실의 제습은 충분히 가능한 것으로 확인되었다. 냉방 온실의 기온을 $32^{\circ}C$로 설정할 때 냉매인 지하수의 온도가 $15^{\circ}C$에서 18, 21, $24^{\circ}C$로 높아지면 제습량은 각각 $17.7\%,\;35.4\%,\;52.8\%$ 감소하는 것으로 나타났다. 또한 지하수 유량을 $75\%,\;50\%$로 줄이면 제습량은 각각 $12.1\%,\; 30.5\%$ 감소하는 것으로 나타났다. 이러한 결과로 미루어 볼 때 지하수를 이용한 제습기의 설계에 있어서 이용 가능한 유량과 온도가 중요한 인자임을 알 수 있다. 포그냉방 온실에 제습기를 설치함으로서 뚜렷한 냉방효율 개선을 확인할 수 있었다. 환기율 0.7 회${\cdot}min^{-1}$정도의 자연환기 상태에서 포.1냉방 온실의 환기에 의한 제습율은 53.9%~74.4%였으며, 제습기를 가동할 경우 75.4~95.9까지 높아졌다. 제습기 설계유량과 $18^{\circ}C$의 지하수를 사용할 경우 0.36회 ${\cdot}min^{-1}$ 정도의 환기율에서도 포그시스템 작동으로 인하여 발생하는 분무량을 완전히 제거할 수 있는 것으로 분석되었다. 따라서 제습기를 이용하여 자연환기 온실에서의 포그 냉방 효율을 충분히 높힐 수 있을 것으로 판단되었다.

Keywords

References

  1. Arbel, A., O. Yekutieli and M. Barak. 1999. Performance of a fog system for cooling greenhouses. J. Agric. Engng Res. 72:129-136 https://doi.org/10.1006/jaer.1998.0351
  2. Arbel, A., M. Barak and A. Shklyar. 2003. Combination of forced ventilation and fogging systems for cooling greenhouses. Biosystems Engineering 84(1): 45-55 https://doi.org/10.1016/S1537-5110(02)00216-7
  3. Boulard, T., A. Bailie and J. Lagier. 1989. Water vapour transfer in a plastic house equipped with a dehumidification heat pump. J. Agric. Engng Res. 44: 191-204 https://doi.org/10.1016/S0021-8634(89)80081-2
  4. Brusewitz, G.H. and M.L. Stone. 1987. Microcomputer controlled desiccant dehumidifier. Transactions of the ASAE 30(2):459-463 https://doi.org/10.13031/2013.31971
  5. Campen, J.B., G.P.A. Bot and H.F. de Zwart. 2003. Dehumidification of greenhouses at northern latitudes. Biosystems Engineering 86(4):487-493 https://doi.org/10.1016/j.biosystemseng.2003.08.008
  6. Hellickson, M.A. and J.N. Walker. 1983. Ventilation of Agricultural Structures. American Society of Agricultural Engineers. p.323-344
  7. Holman, J.P. 1990. Heat transfer seventh edition. McGrow-Hill Pub. Co. pp. 493-596
  8. Kim, M.K., K.S. Kim and H.J. Kwon. 2001. The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. J. Bio. Env. Con. 10(1):10-14 (in Korean)
  9. Kittas, C., T. Bartzanas and A. Jaffrin. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering 85(1):87-94 https://doi.org/10.1016/S1537-5110(03)00018-7
  10. Kwon, H.J. 2002. Development of CFD model to control humidity in greenhouse. M.S. thesis. Seoul National University (in Korean)
  11. Seginer, I. and D. Kantz. 1989. Night time use of dehumidifiers in greenhouses. J. Agric. Engng. Res. 44 :141-158 https://doi.org/10.1016/S0021-8634(89)80078-2
  12. Yanadori, M. and M. Hamano. 1994. Dehumidification in the greenhouse by the ventilation type dehumidifier with heat-flow controllable heat exchanger. Solar energy 53(1):117-123 https://doi.org/10.1016/S0038-092X(94)90611-4
  13. Yun, N.K., M.K. Kim and S.W. Nam. 1998. Dehumidification and evaporative cooling efficiency by water pipes in greenhouse. J. Bio. Fac. Env., 7(3):237-245 (in Korean)