• Title/Summary/Keyword: 내재적 기법

Search Result 343, Processing Time 0.026 seconds

An Implicit Integration Method for Joint Coordinate Subsystem Synthesis Method (조인트 좌표계를 이용한 부분시스템 합성방법의 내재적 적분기법)

  • Jo, Jun-Youn;Kim, Myoung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.437-442
    • /
    • 2012
  • To analyze a multibody system, this paper proposes an implicit numerical integration method for joint coordinates subsystem synthesis method. To verify the proposed method, a multibody model for an unmanned robot vehicle, which consists of six identical independent suspension systems, is developed. The symbolic method is applied to compute the system Jacobian matrix for the implicit integration method. The proposed method is also verified by performing rough terrain run-over simulation in comparison with the conventional implicit integration method. In addition, to evaluate the efficiency of the proposed method, the CPU time obtained by using this method is compared with that obtained by using the conventional implicit method.

Development of An Unsteady Navier-Stokes Solver using Implicit Dual Time Stepping Method and DADI Scheme (내재적 이중시간 전진기법과 DADI 기법을 이용한 비정상 Navier-Stokes 코드개발)

  • Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.34-40
    • /
    • 2005
  • In present study, a two dimensional unsteady Navier-Stokes solver has been developed using the Diagonalized ADI (DADI) method and implicit dual time stepping method. The jacobian matrices in steady state Navier-Stokes equations are introduced from inviscid flux terms. The implicit treatment of artificial dissipation terms results in a block penta-diagonal matrix system and it becomes a scalar penta-diagonal matrix by diagonalization. In steady state equations about fictitious time, a new residual including a real time derivative term is introduced. From a converged solution about fictitious time, a real time unsteady solution can be obtained, which is called 'implicit dual time stepping method'. For code validation, an oscillating flat plate, a regular Karman vortices past a circular cylinder and shock buffeting around a bicircular airfoil problems are numerically solved. And they are compared with a theoretical solution, experiments and other researcher's computations.

2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method (부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석)

  • Im, Dong-Kyun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1153-1161
    • /
    • 2010
  • An efficient solution method for harmonic balance techniques with Fourier transform is presented for periodic unsteady flow problems. The present partially-implicit harmonic balance treats the flux terms implicitly and the harmonic source term is solved explicitly. The convergence of the partially Implicit method is much faster than the explicit Runge-Kutta harmonic balance method. The method does not need to compute the additional flux Jacobian matrix from the implicit harmonic source term. Compared with fully implicit harmonic balance method, this partial approach turns out to have good convergence property. Oscillating flows over NACA0012 airfoil are considered to verify the method and to compare with results of explicit R-K(Runge-Kutta) and dual time stepping methods.

Implicit Stress Integration of the Generalized Isotropic Hardening Constitutive Model : 1. Formulation (일반 등방경화 구성관계에 대한 내재적인 음력적분 : 1. 정식화)

  • 오세붕;이승래
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.145-156
    • /
    • 1996
  • An implicit stress integration algorithm was formulated for implementing an aiusotorpic hardening constitutive model which has been based op the generalized isotropic hardening rule in nonlinear finite element analysis technique. the rate form of stress tensor was implicitly integrated using the generalized trapezoidal rule and the tangent stress-strain modulus was evaluated consistently with the nonlinear solution technique. As a result, it has been found that the nonlinear analysis with the anisotropic hardening constitutive model might be performed accurately and efficiently.

  • PDF

Modified Bayesian personalized ranking for non-binary implicit feedback (비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법)

  • Kim, Dongwoo;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1015-1025
    • /
    • 2017
  • Bayesian personalized ranking (BPR) is a state-of-the-art recommendation system techniques for implicit feedback data. Unfortunately, there might be a loss of information because the BPR model considers only the binary transformation of implicit feedback that is non-binary data in most cases. We propose a modified BPR method using a level of confidence based on the size or strength of implicit feedback to overcome this limitation. The proposed method is useful because it still has a structure of interpretable models for underlying personalized ranking i.e., personal pairwise preferences as in the BPR and that it is capable to reflect a numerical size or the strength of implicit feedback. We propose a computation algorithm based on stochastic gradient descent for the numerical implementation of our proposal. Furthermore, we also show the usefulness of our proposed method compared to ordinary BPR via an analysis of steam video games data.

Numerical Analysis of Viscous Flow on the Periodic Oscillating Flat Plate using Unsteady CFD Code (비정상 CFD 코드를 이용한 주기성 하모닉 진동 평판 위의 점성유동 수치해석)

  • Lee, Eunseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1000-1002
    • /
    • 2017
  • Here, the unsteady Navier-Stokes solver has been developed using implicit dual time stepping method. The implicit dual time stepping method introduced the pseudo time step for solving the new residual including the steady state residual and real time derivative. For the validation of code, Stokes 2nd problem, the laminar flow on the oscillating flat plate was selected and compare the calculating results with analytic solutions. The calculating velocity profile and skin friction has a good agreement with analytic solutions.

  • PDF

Partially Implicit Chebyshev Pseudo-spectral Method for a Periodic Unsteady Flow Analysis (부분 내재적 체비셰브 스펙트럴 기법을 이용한 주기적인 비정상 유동 해석)

  • Im, Dong Kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.17-23
    • /
    • 2020
  • In this paper, the efficient periodic unsteady flow analysis is developed by using a Chebyshev collocation operator applied to the time differential term of the governing equations. The partial implicit time integration method was also applied in the governing equation for a fluid, which means flux terms were implicitly processed for a time integration and the time derivative terms were applied explicitly in the form of the source term by applying the Chebyshev collocation operator. To verify this method, we applied the 1D unsteady Burgers equation and the 2D oscillating airfoil. The results were compared with the existing unsteady flow frequency analysis technique, the Harmonic Balance Method, and the experimental data. The Chebyshev collocation operator can manage time derivatives for periodic and non-periodic problems, so it can be applied to non-periodic problems later.

Construction of an Efficient and Robust Implicit Operator for the LU-SGS Method on Unstructured Meshes (비정렬 격자계에서 LU-SGS 기법에 대한 강건하고 효율적인 내재적 연산자 구성)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • In the present study, an efficient and robust implicit operator for the LU-SGS method is proposed. Numerical experiments for supersonic flow are performed to demonstrate the performance of the proposed method.

  • PDF

Numerical Characteristics of Hypersonic Air Chemistry and Application of Partially Implicit Time Integration Method (극초음속 공기반응의 수치해석적 특성과 부분 내재적 적분법 적용)

  • Kim, Seong-Lyong;Ok, Ho-Nam;Ra, Seung-Ho;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.1-8
    • /
    • 2003
  • Numerical characteristics of air chemistry associated with hypersonic flows are described and are compared with those of hydrogen oxygen combustion, applying the partially implicit time integration method to air chemistry. This paper reveals that the time integration of air chemistry needs a chemical Jacobian for stable calculations. However the positive real eigenvalues in air chemistry are relatively smaller than those of hydrogen combustion, and the numerical integration is less sensitive than that with combustion. lt is also found that the application of the partia1ly irnplicit method reduces the computing time without numerical instabilities.

DEVELOPMENT OF AN HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD ON UNSTRUCTURED MESHES (비정렬 격자계에서 고차 정확도의 내재적 불연속 갤러킨 기법의 개발)

  • Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.29-40
    • /
    • 2007
  • An implicit discontinuous Galerkin method for the two-dimensional Euler equations was developed on unstructured triangular meshes. The method can achieve high-order spatial accuracy by using hierachical basis functions based on Legendre polynomials. Numerical tests were conducted to estimate the convergence order of numerical solutions to the Ringleb flow and the supersonic vortex flow for which analytic solutions are available. Also, the flows around a 2-D circular cylinder and an NACA0012 airfoil were numerically simulated. The numerical results showed that the implicit discontinuous Galerkin methods couples with a high-order representation of curved solid boundaries can be an efficient method to obtain very accurate numerical solutions on unstructured meshes.