• Title/Summary/Keyword: 내부 슬래브

Search Result 95, Processing Time 0.02 seconds

Bending Capacity Evaluation of the Infilled Composite Beam with Semi-slim Closed Section (반슬림 폐단면 충전형 합성보의 휨성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.130-140
    • /
    • 2018
  • An AU-composite beam based on U-shaped steel beams and steel plate anchors of type A was developed. The composite beam reduced the height of the building floor and construction cost. In addition, it decreased the length of construction work, and improved the flexural strength and stiffness as a form of tubes. In this study, AU-composite beams were tested directly and their performance was evaluated through bending experiments. The strength of the specimens was increased initially by linear loads and reached a maximum strength due to destruction of the concrete slab. All of the experiments showed more than 85% of the maximum stress and performed gentle movement. In addition, there was good composite behavior with the steel plate anchor that had excellent composite effects and reached full strength until the maximum strength was reached. When the thickness of the steel plate was increase, the flexural stiffness and strength of the specimen were improved. Therefore, the flexural strength of AU-composite beams can be estimated using the flexural strength formula according to the KBC 2016.

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Stress Distribution of Concrete Pavements under Multi-Axle Vehicle Loads Applied at Pavement Edges (모서리부 차량 다축하중에 의한 콘크리트 도로 포장의 응력 분포 특성)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Lee, Sang-Hoon
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.13-24
    • /
    • 2006
  • The stresses in concrete pavement systems are larger when vehicle loads are applied at pavement edges, and these large stresses significantly affect the behavior and performance of pavements. Therefore, in this study, the stress distribution and the critical stresses in concrete pavements were investigated using a finite element model when dual-wheel single-, tandem-, and tridem-axle loads were applied at pavement edges. First, the stress distribution along the longitudinal and transverse directions was analyzed, and then the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were investigated. The effect of the tire contact pressure related to the tire print area was also studied. The location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to edge loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The effect of the tire contact pressure on the critical stress was clear as the slab thickness became smaller. The critical stress location in the transverse direction was independent of the concrete elastic modulus and the foundation stiffness; however, it moved into the interior as the slab thickness increased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.

  • PDF

Acoustic Emission Signal Analysis for Damage Assessment of the Reinforced Concrete Slab Structures (철근 콘크리트 슬래브 구조 손상 평가를 위한 음향방출 신호분석)

  • Kim, Jeong-Hee;Han, Byeong-Hee;Seo, Dae-Cheol;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.360-367
    • /
    • 2009
  • The acoustic emission(AE) behavior of reinforced concrete slab under flexural loading was investigated to assess the integrity. This study was aimed at identifying the characteristics of AE response associated with damage development. By applying cyclic loading in various load steps, it was able to differentiate each AE source such as distributed micro crack initiation, friction, flexural crack and localized diagonal tension crack. The secondary peak and the change of AE hit rate gave valuable criteria fur assessment. From the analysis of the felicity ratio, furthermore, it was shown that this values can be used for evaluating the degree of concrete damage. Based on the experimental results, this approach for practical AE application may provide a promising method for estimating the level of damage and distress in concrete structures.

The Behavior of Composite Bridge Using Slab Anchor (Slab Anchor를 사용한 합성교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Kim, Jong-Hun;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.177.1-182
    • /
    • 2002
  • 본 연구는 합성교량의 경우 브라켓이나 가로보에 사용되고 비합성교량의 경우 연결재로 사용되는 스랩앵커를 Push-Out Test를 하여 실험으로 얻은 특성을 실제 소수주형모델에 적용하여 FEM해석을 통하여 거동특성을 파악 하고자 한다. 일반적으로 전단연결재 실험의 경우 콘크리트 슬래브와 강재 주형 사이에 직접 길이 방향 전단력을 작용시킬 수 있을 뿐 아니라 실험의 편리함 때문에 주로 Push-out 실험이 많이 이용되고 있다. 본 실험에서는 BS-5400에 제시된 바에 근거하여 실험체를 제작하였다. 이 실험을 통하여 탄성구간에서의 강성(k) 값을 알아내어 3D FEM 해석에 적용한다. 이때 콘크리트 바닥판과 강재와의 연결을 축 방향으로는 특정한 강성 값을 넣을 수 있는 Joint Element를 사용하여 연결시키고, 1경간 단순지지와 2경간 연속교에 대하여 연구를 수행하는데, 1경간 단순지지의 경우에는 Joint Element에 여러 강성 값과 실험을 통해 얻은 강성 값을 적용하여 합성거동을 파악하고 강성 값에 따른 합성정도를 규명하고자 한다. 또한 2경간 연속교에서는 슬랩앵커의 강성 값을 적용하여 많이 문제시되고 있는 내부지점부에 슬랩앵커를 사용하였을 때 슬래브의 인장응력이 어떤 변화양상을 나타내는지 파악 하고자한다.

  • PDF

Experimental Analysis of Terminus and Horizontal Crack Behaviors in Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 단부 및 수평균열 거동 실험적 분석)

  • Cho, Young-Kyo;Kim, Seong-Min;An, Zuog;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.81-91
    • /
    • 2011
  • This study was conducted to evaluate the necessity of the anchor lug system in continuously reinforced concrete pavement(CRCP) by comparing longitudinal displacements of CRCPs with and without anchor lugs, and to investigate the effect of horizontal cracking on CRCP performance by measuring the vertical displacements. The measurements before and after the anchor lug section was separated were conducted for 12 days in June, and for 14 days in August after the abrupt displacements according to cutting disappeared, respectively. This short term measurement results showed that when anchor lugs were installed, a daily displacement variation at any location was less than 0.1mm; therefore, longitudinal movements were negligibly small. When there were no anchor lugs, longitudinal displacements mainly occurred near the free end and the displacement variation was small; therefore, an expansion joint system seems to be employed at a CRCP terminus without installing anchor lugs. However, further studies are needed to verify the terminus behavior due to annual temperature changes. The horizontal crack width variation was ignorable and did not affect the vertical displacement of the slab. Therefore, the horizontal crack did not delaminate the slab and did not seem to reduce the structural capacity and performance of CRCP.

Forecast on Internal Condensation at Balcony Ceiling of Super-high Apartment Building Faced with Open Air (외기에 면한 초고층 아파트 발코니 천정 내부결로 예측)

  • Choi Yoon-Ki;Ahn Jae-Bong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.155-163
    • /
    • 2003
  • There are a growing number of cases to expand balconies of apartments faced with open air in order to enhance functional satisfaction and efficiency of dwelling space. In case of the balcony expansion at the floor, however, it is difficult to exclude a possibility of bringing about internal condensation due to the difference of temperature between indoor air and outdoor air caused by the Inflow of outer low-temperature air through the upper part of ceilings by failure in completely putting together the outer composite wall panels on the aluminum curtain walls installed at outer walls This study is to forecast possible occurrence of internal condensation around parapets and H-beam located at the inside of balcony ceilings on the uppermost floor of super-high apartment buildings faced with open air in order to provide dwellers with more comfortable environment in the related space and get rid of their uneasiness about the condensation. In this study, we estimated internal condensation, which vary in accordance with humidity pressure distribution, at curtain walls, stone panels or lower parts of slabs that constitute outer space of the residence and are weak against heat, through temperature forecast and temperature distribution interpretation program at normal two-dimension temperature

A Study on the Actual Conditions of and Satisfaction with the Existed Female Dress Forms Usage (국내 여성용 인대 사용 실태 및 만족도에 관한 연구)

  • Park Gin-Ah;Lee Hye-Young;Choi Jin-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.3 s.151
    • /
    • pp.378-385
    • /
    • 2006
  • To release fashion trends in an efficient way, many of the apparel business and fashion educational institutes in land adopt fashion shows employing fashion models. Modeling rather than flat pattern making realizes the majority of the complicated design works for the fashion shows. However, for the different measurements between the dress form and the real human model, problems often occur during the modeling and fitting processes. Researches on the standard dress form development representing professional fashion models' features are therefore in urgent need to enable the related apparel business and fashion institutes to make appropriate use of the dress form in their jobs. The study has been conducted as a preliminary study using a questionnaire method ultimately to develop the female dress form. A questionnaire in the research aimed at an investigation into the actual conditions of and satisfaction with the usage and the body measurements of existed dress forms. Approximately 30 fashion-related educational institutes and 10 apparel companies responded to the survey. Data derived from the survey was analyzed using SPSS version 10.1, the statistics tool. The results throughout the research were discussed in terms of largely three categories that are; (1) the general conditions of the usage of the dress form to prepare fashion shows: e.g. the frequency of holding the fashion show in an annual term, the proportion of professional and amateur models employed for the fashion show, the methods to construct garments, types and number of dress forms utilized and etc.; (2) factors considered to purchase the dress form e.g. its functionality, shapes, sizes, duration, price, A/S condition and etc.; and(3) satisfaction with the similarity between the dress form and the human body in the relation to the body measurements. Measurements in length wise, front and back waist lengths, neck to bust point on the dress forms were apparently differed from the ones of the actual body. In particular, differed torso length measurements cause the problem to have to alter the whole silhouette, consequently, the resultant patterns as well. In girth measurements, in order of bust and waist girths, the satisfaction was low.