• Title/Summary/Keyword: 남산

Search Result 435, Processing Time 0.026 seconds

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing (가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성)

  • Jin-Kwon Kim;Jae-Hyeong Choi;Nahm Sahn;Sung-Soo Ryu;Seongwon Kim
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

Effects of Acid Deposition on Cation Contents of Pinus densiflora needles in Namsan (남산지역에서 산성강하물이 솔잎의 양이온 함량에 미치는 영향)

  • Lee Sang-Deok;Han Jin-Seok;Joo Yeong-Teuk;Oh Hyun-Kyung;Kong Hak-Yang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • This study investigated effects of acid deposition on cation contents of rinus densiflora needles. The results of the investigation were as follows: By regression the ion balance was shown to be 1.01 of slope and 0.973 of $R^2$. The volume weighted average pH measurements of wet deposition in Seoul from January to December, 2001, 2002 and 2003 were: pH 5.1, pH 5.0 and pH 4.8, respectively. The annual wet deposition ion amount was shown to gradually increase during this study period. Cation content of needles in the fall season was higher than during other seasons, but $Al^{3+}$ ion contents showed nodifferences among seasons. When ion concentrations of wet deposition were higher, cation contents of needles were generally lower.

Negative Ion Generation Index according to Altitude in the Autumn of Pine Forest in Gyeongju Namsan (경주 남산 소나무림의 가을철 해발고도별 음이온 발생지수)

  • Kim, Jeong Ho;Yoon, Ji Hun;Lee, Sang Hoon;Choi, Won Jun;Yoon, Yong Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.413-424
    • /
    • 2018
  • The study analyzed the effects of topographic structures and altitude in mountainous parks in Mt. Namsan in Gyeongju on the generation of anions. The temperature was at ridge ($9.82^{\circ}C$) > valley ($8.44^{\circ}C$), the relative humidity valley (59.01 %) > ridge (58.64 %), the solar radiation ridge ($34.40W/m^2$) > valley($14.69W/m^2$), the wind speed ridge (0.63m/s) > valley(0.37m/s), and the negative ion valley($636.81ea/cm^3$) > ridge($580.04ea/cm^3$). In the valley, the correlation with altitude was verified for the temperature, relative humidity, solar radiation, and negative ion generation in the valley. The relative humidity, solar radiation, and negative ion indicated a positive correlation while the temperature had a negative correlation. In the ridge, the correlation with altitude was verified for the temperature, relative humidity, wind speed, solar radiation, and negative ion generation. The relative humidity, solar radiation, and negative ion generation indicated a positive correlation while the temperature and wind speed had a negative correlation. The regression analysis showed the prediction equation of y=-0.006x+9.663 (x=altitude, y=temperature) in the valley and y=-0.009x+11.595 (x=altitude, y=temperature) in the ridge for the temperature, y=0.027x+53.561 (x=altitude, y=relative humidity) in the valley and y=0.008x+56.646 (x=altitude, y=relative humidity) in the ridges for the relative humidity, and y=0.027x+53.561 (x=altitude, y=negative Ion generation) in the valley and y= 0.008x+56.646 (x=altitude, y=negative Ion generation) in the ridge for the negative ion generation.

A Time Sequential Research on Changes in Jangchungdan Park during the Period of Japanese Colonial Rule (일제강점기 장충단공원 변화에 관한 시계열적 연구)

  • Kim, Hai-Gyoung;Choui, Hyun-Im
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.95-112
    • /
    • 2013
  • Jangchungdan Park is now perceived as a mere park at the foot of Namsan mountain, but originally it was created to commemorate soldiers of Korean Empire on a site which name was Namsoyeong(南小營) during Joseon Dynasty. During the period of Japanese colonial rule, it was transformed into a park due to the rapidly changing circumstances, so the components expressing the validity of the colonial rule were introduced into the park. This paper examines the time sequential changes of Jangchungdan Park during the period of Japanese colonial rule, and the conclusions can be summarized as given below. Firstly, the park originally was a space to commemorate the soldiers who fought for the Korean Empire. It was built on formerly restricted area at the foot of Namsan Mountain in 1900, and it was arranged putting the ceremonial shrine Dansa (壇祠) as a central building and the annexes in the surroundings of it. The memorial ceremonies were held regularly in spring and autumn until 1909. Secondly, it became a city park for citizens of Gyeongseong-bu(the name of Seoul under the Japanese colonial rule). The authorities of Gyeongseong-bu reorganized Jangchungdan as a park in 1919, prohibited the performance of memorial ceremonies, and the existing buildings except the ceremonial shrine Dansa began to be used as park management facilities. Resting areas and amenities were supplemented for the usage of people from various backgrounds, and the large scale planting of cherry trees made the park a famous place to enjoy cherry-blossoms and other flowers in spring. Thirdly, it was reconstructed as a space to honor the influential personalities of Japanese colonial system. In 1932, Bankmun temple (博文寺) to commemorate Ito Hirobumi was constructed at a location that made it possible for a number of people to overlook Jangchungdan area. During that time, the buildings of traditional Joseon architecture were removed and reconstructed to serve as annexes to Bankmun temple. Due to the strategy to make Jangchungdan park a tourist attraction, Bankmun temple was included into the Gyeongseong sightseeing course, since the wide panorama of Jangchungdan Park and the whole city of Gyeongseong was opening from the temple. Various different components were introduced into Jangchungdan Park due to the rapidly changing circumstances; therefore the nature of the park was either altered or reproduced. Hopefully, the park rearrangement works will be executed paying respects to the memories of the past hereafter.

The Continuous Measurement of CO2 Efflux from the Forest Soil Surface by Multi-Channel Automated Chamber Systems (다중채널 자동챔버시스템에 의한 삼림토양의 이산화탄소 유출량의 연속측정)

  • Joo, Seung Jin;Yim, Myeong Hui;Ju, Jae-Won;Won, Ho-yeon;Jin, Seon Deok
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 2021
  • Multichannel automated chamber systems (MCACs) were developed for the continuous monitoring of soil CO2 efflux in forest ecosystems. The MCACs mainly consisted of four modules: eight soil chambers with lids that automatically open and close, an infrared CO2 analyzer equipped with eight multichannel gas samplers, an electronic controller with time-relay circuits, and a programmable logic datalogger. To examine the stability and reliability of the developed MCACs in the field during all seasons with a high temporal resolution, as well as the effects of temperature and soil water content on soil CO2 efflux rates, we continuously measured the soil CO2 efflux rates and micrometeorological factors at the Nam-san experimental site in a Quercus mongolica forest floor using the MCACs from January to December 2010. The diurnal and seasonal variations in soil CO2 efflux rates markedly followed the patterns of changes in temperature factors. During the entire experimental period, the soil CO2 efflux rates were strongly correlated with the temperature at a soil depth of 5 cm (r2 = 0.92) but were weakly correlated with the soil water content (r2 = 0.27). The annual sensitivity of soil CO2 efflux to temperature (Q10) in this forest ranged from 2.23 to 3.0, which was in agreement with other studies on temperate deciduous forests. The annual mean soil CO2 efflux measured by the MCACs was approximately 11.1 g CO2 m-2 day-1. These results indicate that the MCACs can be used for the continuous long-term measurements of soil CO2 efflux in the field and for simultaneously determining the impacts of micrometeorological factors.

A Study on the Architecture of the Original Nine-Story Wooden Pagoda at Hwangnyongsa Temple (황룡사 창건 구층목탑 단상)

  • Lee, Ju-heun
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.2
    • /
    • pp.196-219
    • /
    • 2019
  • According to the Samguk Yusa, the nine-story wooden pagoda at Hwangnyongsa Temple was built by a Baekje artisan named Abiji in 645. Until the temple was burnt down completely during the Mongol invasion of Korea in 1238, it was the greatest symbol of the spiritual culture of the Korean people at that time and played an important role in the development of Buddhist thought in the country for about 700 years. At present, the only remaining features of Hwangnyongsa Temple, which is now in ruins, are the pagoda's stylobate and several foundation stones. In the past, many researchers made diverse inferences concerning the restoration of the original structure and the overall architecture of the wooden pagoda at Hwangnyongsa Temple, based on written records and excavation data. However, this information, together with the remaining external structure of the pagoda site and the assumption that it was a simple wooden structure, actually suggest that it was a rectangular-shaped nine-story pagoda. It is assumed that such ideas were suggested at a time when there was a lack of relevant data and limited knowledge on the subject, as well as insufficient information about the technical lineage of the wooden pagoda at Hwangnyongsa Temple; therefore, these ideas should be revised in respect of the discovery of new data and an improved level of awareness about the structural features of large ancient Buddhist pagodas. This study focused on the necessity of raising awareness of the lineage and structure of the wooden pagoda at Hwangnyongsa Temple and gaining a broader understanding of the structural system of ancient Buddhist pagodas in East Asia. The study is based on a reanalysis of data about the site of the wooden pagoda obtained through research on the restoration of Hwangnyongsa Temple, which has been ongoing since 2005. It is estimated that the wooden pagoda underwent at least two large-scale repairs between the Unified Silla and Goryeo periods, during which the size of the stylobate and the floor plan were changed and, accordingly, the upper structure was modified to a significant degree. Judging by the features discovered during excavation and investigation, traces relating to the nine-story wooden pagoda built during the Three Kingdoms Period include the earth on which the stylobate was built and the central pillar's supporting stone, which had been reinstalled using the rammed earth technique, as well as other foundation stones and stylobate stone materials that most probably date back to the ninth century or earlier. It seems that the foundation stones and stylobate stone materials were new when the reliquaries were enshrined again in the pagoda after the Unified Silla period, so the first story and upper structure would have been of a markedly different size to those of the original wooden pagoda. In addition, during the Goryeo period, these foundation stones were rearranged, and the cover stone was newly installed; therefore, the pagoda would seem to have undergone significant changes in size and structure compared to previous periods. Consequently, the actual structure of the original wooden pagoda at Hwangnyongsa Temple should be understood in terms of the changes in large Buddhist pagodas built in East Asia at that time, and the technical lineage should start with the large Buddhist pagodas of the Baekje dynasty, which were influenced by the Northern dynasty of China. Furthermore, based on the archeological data obtained from the analysis of the images of the nine-story rock-carved pagoda depicted on the Rock-carved Buddhas in Tapgok Valley at Namsan Mountain in Gyeongju, and the gilt-bronze rail fragments excavated from the lecture hall at the site of Hwangnyongsa Temple, the wooden pagoda would appear to have originally been an octagonal nine-story pagoda with a dual structure, rather than a simple rectangular wooden structure.

Synthesis and Photoluminescence Properties of Red-Emitting (Y,Al)VO4:Eu3+ Nanophosphors (적색 발광 (Y,Al)VO4:Eu3+ 형광체 나노입자의 합성과 발광 특성)

  • Seo, Jung-Hyun;Choi, Sung-Ho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Red-emitting $Eu^{3+}$-activated $(Y_{0.95-x}Al_x)VO_4$ (0 < x $\leq$ 0.12) nanophosphors with the particle size of ~30 nm and the high crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water as a solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and the photoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared $(Y_{0.95-x}Al_x)VO_4:Eu^{3+}$ nanophosphors were compared with those of the $YVO_4:Eu^{3+}$. Under 147 nm excitation, $(Y_{0.95-x}Al_x)VO_4$ nanophosphors showed strong red luminescence due to the $^5D_0-^7F_2$ transition of $Eu^{3+}$ at 619 nm. The luminescence intensity of $YVO_4:Eu^{3+}$ enhanced with partial substitution of $Al^{3+}$ for $Y^{3+}$ and the maximum emission intensity was accomplished at the $Al^{3+}$ content of 10 mol%. By the addition of $Al^{3+}$, decay time of the $(Y,Al)VO_4:Eu^{3+}$ nanophosphor was decreased in comparison with that of the $YVO_4:Eu^{3+}$ nanophosphor. Also, the substitution of $Al^{3+}$ for $Y^{3+}$ invited the improvement of color coordinates due to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors were fabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, a transparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibited the red emission at 619 nm under 147 nm excitation and the transmittance of ~80% at 600 nm.

Optimization of the Unimorph Cantilever Generator (UCG) Using Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 thick films (Pb(Zr0.54Ti0.46)O3 + 0.2 wt% Cr2O3 + 1.0 wt% Nb2O5 조성의 압전 후막을 이용한 유니몰프형 캔틸레버 발전기(UCG)의 최적화)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.955-960
    • /
    • 2012
  • We fabricated piezoelectric unimorph cantilever generators (UCG) using $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZCN) piezoelectric thick films, which were produced by a tape casting method. The PZCN thick films were tailored with same width and thickness but different lengths from 7.7 to 57.7 mm in order to evaluate optimized UCG for energy harvesting device applications. When the length of PZCN film was increased, the resonance frequency of UCG was slightly increased from 7 Hz to 8 Hz, which could be due to enlarged area of the highly stiff piezo-ceramic film. However, the output power was proportionally increased with the length of PZCT film and it reached 4.68 mW (1.221 $mW/cm^3$) when the film's length was 57.7 mm under 25 g of tip mass at 8 Hz, which is sufficient for micro-scale device applications.

Rheological behavior and IPL sintering properties of conductive nano copper ink using ink-jet printing (전도성 나노 구리잉크의 잉크젯 프린팅 유변학적 거동 및 광소결 특성 평가)

  • Lee, Jae-Young;Lee, Do Kyeong;Nahm, Sahn;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.174-182
    • /
    • 2020
  • The printed electronics field using ink-jet printing technology is in the spotlight as a next-generation technology, especially ink-jet 3D printing, which can simultaneously discharge and precisely control various ink materials, has been actively researched in recent years. In this study, complex structure of an insulating layer and a conductive layer was fabricated with photo-curable silica ink and PVP-added Cu nano ink using ink-jet 3D printing technology. A precise photocured silica insulating layer was designed by optimizing the printing conditions and the rheological properties of the ink, and the resistance of the insulating layer was 2.43 × 1013 Ω·cm. On the photo-cured silica insulating layer, a Cu conductive layer was printed by controlling droplet distance. The sintering of the PVP-added nano Cu ink was performed using an IPL flash sintering process, and electrical and mechanical properties were confirmed according to the annealing temperature and applied voltage. Finally, it was confirmed that the resistance of the PVP-added Cu conductive layer was very low as 29 μΩ·cm under 100℃ annealing temperature and 700 V of IPL applied voltage, and the adhesion to the photo-cured silica insulating layer was very good.

Ecological Characteristics and Change for fifteen Years$(1990$\sim2004)$ of Plant Community Structure of the Pinus densiflora S. et Z. Forest in Namsan, Seoul (서울시 남산소나무림 생태적 특성 및 15년간(1990$\sim$2004년) 식생구조 변화분석)

  • Lee Kyong-Jae;Kim Jeong-Ho;Han Bong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.3
    • /
    • pp.312-326
    • /
    • 2005
  • The purpose of this study is to provide data for conservation and ecological management of Pinus densiflora forest by analyzing ecological characteristics and the change of Pin us densiflora community structure for fifteen years in Namsan(Mt.). The actual vegetation of Pinus densiflora forest was divided into total six types and fifteen detail types. According to the results of TWINSPAN analysis of Pinus densiflora forest, there were fourty-four plots(unit: 400 m') and it was classified into five community types. The dominant species were Pinus densiflora in canopy layer, Styrax japonica in the understory layer and Stephanandra incisa with Rhododendron mucronujatum in the shrub layer. The index of shannon's diversity was from 1.5980 to 1.1485 per $400m^2$and the range of species number was from seventeen to twenty-two. As a result of the change of Pin us densinora forest structure, the importance percentage(1.p.) of Pinus densi. nora$(I.P.:\;77.9\%\rightarrow50.6\%) was decreased, Styraxjaponica$(I.P.:\;5.3\%\rightarrow22.6\%), Prunus sargen $(I.P.:\;1.5\%\rightarrow9.2\%) and Stephanandra incisa$(I.P.:\;3.5\%\rightarrow7.7\%) were increased for fifteen years. Based on standard of $2,000m^2$unit area, shannon's diversity changed 1.1719 into 0.8829 and species number changed thirty-four into twenty-one.