• Title/Summary/Keyword: 날개표면 압력분포

Search Result 16, Processing Time 0.026 seconds

Surface pressure measurement on a wing of SWIM by using PSP (PSP를 이용한 항공기 형상 모형 날개 표면 압력 측정)

  • Jung, Hye-Jin;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-345
    • /
    • 2008
  • this study, three dimensional surface pressure distributions of SWIM whose main wing has NACA4412 airfoil with NACA0012 flaps were experimentally measured by pressure sensitive paint. Surface pressures on suction and pressure sides of the wing were measured by changing an angle of attack at a Reynolds number of 3.1x105 in KARI 1m subsonic wind tunnel. The experimental results showed that as an angle of attack increases minimum pressure region on a suction side moved from the wing root to the tip and low pressure region around trailing edge of the wing tip which causes wing tip vortex was observed. Although low pressure region at the tip still observed at an angle of attack 15 deg., other area on a suction side showed flat pressure distribution in a span-wise direction. It was also observed that the mean value of pressure coefficients was about 0.077 through a comparison between PSP and pressure taps at the same test conditions.

Papers : Effects of LEX on the Surface Pressure Distribution over a Delta Wing (논문 : LEX 가 델타형 날개의 표면압력분포에 미치는 영향)

  • Baek, Seung-Uk;Son, Myeong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • An experimental study was conducted to investigate the effects of leading edge extension(LEX) on the surface prssure distribution over a delta wing in a subsonic wind tunnel. Freestream velocity was 40m/sec and Reynolds number per meter was 1.7x$10^6$ with total pressure of 101Pa and total temperature of 278K. LEX changed the surface pressure distribution on the wing dramatically. Comparing with the results without LEX, the peak of pressure distribution decreased on the front chordwise location but it turned to increase on the rear chordwise location with increase of the angle of attaci. The spanwise gradient of the pressure distribution also increased in the rear chordwise location. Without LEX, the peak of pressure distribution increased and decreased irregularly with increase of the angle of attack at each chordwise location, but LEX made it increased almost linearly with increase of the angle of attack at all of the chordwise locations.

A Potential-Based Panel Method for the Analysis of a 2-Dimensional Partially Cavitating Hydrofoil (양력판 이론에 의한 2차원 수중익의 부분 캐비티 문제 해석)

  • Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • A potential-based panel method is formulated for the analysis of a partially cavitating 2-dimensional hydrofoil. The method employs dipoles and sources distributed on the foil surface to represent the lifting and cavity problems, respectively. The kinematic boundry condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the inner flow region of the foil. The dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the velocity be constant. Green's theorem then results in a potential-based boundary value problem rather than a usual velocity-based formulation. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with more improved accuracy than the zero-thickness hydrofoil theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. It was found that five iterations are necessary to obtain converged values, while only two iterations are sufficient for engineering purpose.

  • PDF

A Study on the Measurement of Aerodynamic Load of Aircraft Wing (항공기 날개의 공력하중 측정 기법 연구)

  • Kang, Seung-Hee;Lee, Jong-Geon;Lee, Seung-Soo;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2002
  • A study on the test, design and fabrication of wind tunnel model for measurement of air load distribution on wing surfaces is presented. 447 pressure taps are installed normal to the wing surfaces, and measured by PSI-8400 system using total 8 ESPs modules installed in the model. The test was performed at 50 m/sec constant speed in the low speed wind tunnel of Agency for Defense Development. Tests were carried out to determine effects of angle of attack, angle of sideslip and flap and stores for the load distribution of wing. The test results in this paper can be applied to the design optimization of structure and validation of computational fluid dynamics.

Power Coefficient and Pressure Distributions on Blade Surfaces of a Wind Turbine with Tiltable Blades by 3D Simulations (날개 틸팅형 풍력발전기의 출력과 날개 표면의 압력분포에 대한 3차원 유동 해석)

  • Jeong, Chang-Do;Bae, Hyunwoo;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a new shape of wind turbine with horizontal axis has been proposed. The proposed wind turbine has two pairs of 3 tiltable blades which minimizes air resistance during the reverse rotational direction. Under a given wind speed, 3D numerical simulations on tiltable blades were performed for various TSRs(tip-speed-ratios). Four cases of rotational position was considered to analyze the torque and wind power generated on the blade surfaces. The results show that the maximum wind power occurs at the TSR of 0.2. Due to the blade tilting, the wind passes through the blade without air resistance at the reverse rotational direction. The torque is mainly caused by pressure differences between the front and rear surface of the blade, and it becomes maximum when the blade is located at the azimuth angle of 330°.

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio (가로세로비에 따른 날개 하부 유동장의 공기역학적 영향)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

Flow Analysis of a Commercial Passenger Airplane with or without Jet Engines (상용 여객기에서 엔진의 비장착/장착을 고려한 유동 해석)

  • Kim, Yang-Kyun;Kim, Sung-Cho;Choi, Jong-Wook;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • This paper describes the aerodynamic interference characteristics between the ing and the engines in a commercial airplane which is realized by reverse engineering based on the photo measurement. Steady three-dimensional compressible inviscid Euler equation is solved in the unstructured grid system under the cruise condition. The lift and drag forces in the wing with engines increase by 1.49% and 3.9%, respectively compared with the wing without engines.

  • PDF

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

Grid Convergence on Surface Pressure Distribution over the RAE-A Wing-Body Configuration (RAE-A 날개-동체 형상의 압력 분포에 대한 격자 수렴성 연구)

  • Kim, Ki Ro;Park, Soo Hyung;Sa, Jeong Hwan;Cho, Kum Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.226-232
    • /
    • 2017
  • Surface pressure distributions over the RAE-A wing-body configuration were investigated and the grid convergence along the streamwise, spanwise, and circumferential directions was numerically studied. Flow analysis in subsonic and transonic conditions was conducted using the $k-{\omega}$ Wilcox-Durbin+ turbulence model. Surface pressure distributions for subsonic flows were well matched, but those for transonic shocked flows showed a little discrepancy with the experimental data. A cubic spline extrapolation method was applied in order to investigate the grid convergence. This method presented that the grid resolution in the circumferential direction is the most important grid parameter. A refined grid system was made based on the grid convergence study and provided more accurate prediction, especially on the symmetric body surface of RAE-A configuration.