• Title/Summary/Keyword: 난방 시스템

Search Result 682, Processing Time 0.026 seconds

Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators (집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발)

  • Kim, Yongha;Kim, Seunghee;Hyeon, Seungyeon
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Since the heat is not as fast as the electric power and the loss is relatively large compared to the electric power, it is not realistic to operate the thermal transfer system with on operation center like electric power trading. In the case of the Korea District Heating Corporation, where all the thermal transfer are currently being made, only two or four adjacent heat-generating power plants are being the heat trading. Therefore, In this paper, we concluded that it is appropriate to divide the integrated operation center for heat trading into several regions, to operate the hub integrated operation power plant in each region to reflect the characteristics of the heat medium and proposed the thermal transfer mechanism among integrated energy operators. Then, we have developed an algorithm that can optimize the heat transaction for the proposed mechanism and applied it to the actual operators to verify the usefulness of the proposed algorithm.

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.

A Study on Hybrid Heating System with Anti-Superheating Devices (과열방지장치가 설치된 복합열원 난방시스템에 관한 연구)

  • Park, Youn-Cheol;Ko, Gwang-Soo;Han, Yu-Ry
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • The previous study was conducted to develop an air source multi heat pump system that could be operated with the solar collector and air source heat exchangers as heat source of the system. There is a winter-sowing problems in air source multi heat pump system when the outdoor temperature goes down under freezing point. The winter-sowing problem was solved by adapting R-22 refrigerant as working fluid in the previous study. However, when the system operated at high temperature, another problems are come out such as overheating of the solar collector outlet which lead to the superheat of the compressor inlet of the heat pump system. The condition could deteriorates a compressor in some case. In this study, we installed the anti-superheating devices on the previously developed system. As results of system performance test, COP of the system with anti-superheating technique is 2.4. It is a little improved COP compare to previous study's 2.23. In the results of multi heat source heating system, during operating solar collector, COP is relatively high between $200\;W/m^2$ and $400\;W/m^2$ solar intensity. It is recommended to extend the study on performance optimization with balancing the solar collect and capacity of compressor at higher solar irradiation conditions.

Heating Performance of a Ground Source Heat Pump System through Actual Operation (지열원 히트펌프시스템의 실사용을 통한 난방성능연구)

  • Koo, Kyoung-Min;Jeong, Young-Man;Hwang, Yu-Jin;Lee, Jae-Keun;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1341-1346
    • /
    • 2008
  • This paper presents the heating performance of a water-to-refrigerant type ground source heat pump system (GSHP) installed in a school building. The evaluation of the heating performance has been conducted under the actual operating conditions of GSHP system in the winter. Ten units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. For analyzing the heating performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the heating capacity and the input power were evaluated for determining the heating performance of the GSHP system. The average heating coefficient of performance (COP) of the heat pump was found to be 5.1 at partial load of 46.9%, while the overall system COP was found to be 4.2.

  • PDF

A Study on Specific of Ground Water Temperature Changes of the Small Scaled SCW GWHP System in Case of Heating (소규모 SCW 지중열 시스템의 난방시 지하수 온도 변화 특성에 관한 연구)

  • Yang, Seung-Jin;Lee, Won-Ho;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-whan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1347-1352
    • /
    • 2008
  • The SCW ground heat pump system releases ground energy from the ground water of ground heat exchanger. In other word, ground water is used to heating through releases ground energy which oneself has. But the thermal efficiency of system is going to down because repetitive process of ground water will lost ground energy in standing column well system and if heating load is continually increase, energy of ground water may be frozen or there are no benefits to use ground energy as it owes just little energy. To solve these problems, there are need to exchange water to the ground heat exchanger then the way will be used to maintain Efficiency continually as the way of to be supplied with fresh ground water into ground heat exchanger. However, this type causes waste of ground water. Therefore it is essential to discharge water to outside timely on a heat exchanger. Therefor through a study, find out the best time to discharge water to outside and exchange water to ground heat exchanger, and propose to the DB of design of the ground heat exchanger.

  • PDF

Heating Performance of a Ground Source Heat Pump System through Actual Operation (지열원 히트펌프시스템의 실사용을 통한 난방성능연구)

  • Koo, Kyoung-Min;Jeong, Young-Man;Hwang, Yu-Jin;Lee, Jae-Keun;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.788-793
    • /
    • 2008
  • This paper presents the heating performance of a water-to-refrigerant type ground source heat pump system (GSHP) installed in a school building. The evaluation of the heating performance has been conducted under the actual operating conditions of GSHP system in the winter. Ten units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. For analyzing the heating performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the heating capacity and the input power were evaluated for determining the heating performance of the GSHP system. The average heating coefficient of performance (COP) of the heat pump was found to be 5.1 at partial load of 46.9%, while the overall system COP was found to be 4.2.

  • PDF

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

Research on Thermal Performance by Different Fins in a Solar Air Heater (태양열 공기난방기에서 핀의 형상에 따른 열전달 성능 평가)

  • Choi, Hwi-Ung;Hong, Boo-Pyo;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.85-91
    • /
    • 2013
  • It is essential to reduce the amount of fossil fuel because facing with the natural problem such as a global warming. To achieve this goal, many of interests in the use of renewable energy is growing. Especially, as one of these renewable energy systems, a solar air heater invention has been conducted for enhancing the efficiency of solar air heater. According to this trend, scale-down sized experiment apparatus was constructed and performed for searching a proper fin and confirming the heat transfer performance by fin shape on constant heat condition to enhance efficiency of solar air heater. In this experiment, heat gain, convection heat transfer coefficient, number of transfer units, Nusselt number, Reynold's number, friction factor, performance factor were investigated in order to evaluate the thermal characteristics based on the real data obtained. By comparison with the each fin performance, a zigzag shape keeping a right angle to the plate had the highest value among them.

A Study of Performance Characteristics on Hybrid Heat Pump System with Solar Energy as Heat Source (태양열이용 하이브리드 열펌프시스템의 성능특성에 관한 연구)

  • Park, Youn-Cheol;Kim, Ji-Young;Ko, Gwan-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Interests on renewable energy are increased due to oil price and environmental problems aroused from the fossil energy usage. In this study, performances of a solar assisted hybrid heat pump system are analyzed by experimental method. The developed system could runs at two types of operating mode. When the storage temperature is higher than the set temperature, the stored hot water in storage tank is supplied to the load directly. On the other hand, when the storage temperature lower than the set temperature, the water inside of the storage tank is used as heat source of the heat pump. In this study, the system control temperature for the alternation of the operating mode is set to $40^{\circ}C$ of the storage tank outlet. As results, it is founded that the COP of the developed heat pump system shows between 3.0 and 3.5. It is resonable performance for the heating system with a renewable energy as secondary heat source. The solar collect used in this study could supplies heat to the storage tank at over 400 W/m2 solar intensity. If the irradiation is lower than the 400 W/m2, the circulation pump stored and it could not supply heat to the storage tank. It is found that the difference temperature between the outlet of the storage tank and collector is $3^{\circ}C$. Even though, the extended study should be conducted to get a optimum performance of the developed system with various operating condition and control strategies.

Analysis of Induced Voltage on the Gas Pipeline at the Fault in a Underground Power Cables (지중전력케이블에서 고장발생시 인근 가스배관에 유도되는 전압 해석)

  • Bae J. H.;Kim D. K.;Kim K. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.26-32
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power Therefore, there has been and still is a growing concern(safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline, especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion limitation of safety voltage and analysis of induction voltage.

  • PDF