• Title/Summary/Keyword: 낙엽분해

Search Result 81, Processing Time 0.031 seconds

Nutrient Dynamics in Litterfall and Decomposing Leaf Litter at the Kwangneung Deciduous Broad-Leaved Natural Forest (광릉 천연활엽수림의 낙엽낙지와 낙엽분해에 따른 양분동태)

  • Choonsig Kim;Jong-Hwan Lim;Joon Hwan Shin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Litterfall and litter decomposition represent a major contribution to the carbon and nutrient inputs in a forest ecosystem. We measured litterfall quantity and nutrient dynamics in decomposing litter for two years at the Kwangneung broadleaf natural forest (DK site) in Korea. Litterfall was collected in circular littertraps (collecting area : 0.25 $m^2$) and mass loss rates and nutrient release patterns in decomposing litter were estimated using the litterbag technique employing 30 cm ${\times}$ 30 cm nylon bags with 1.5 mm mesh size. Total annual litterfall was 5,627 kg/ha/yr and leaf litter accounted for 61 % of the litterfall. The leaf litter quantity was highest in Quercus serrata, fallowed by Carpinus laxiflora and C. cordata, etc., which are dominant tree species in the site. Mass loss from decomposing leaf litter was more rapid in C. laxiflora and C. cordata than in Q. serrata litter. About 77% of C. laxiflora and 84% of C. cordata litter disappeared, while about 48% in Q. serrata litter lost over two years. Lower mass loss rates of Q. serrata litter may be attributed to the difference of substrate quality such as lower nutrient concentrations compared with the other litter types. Nutrient concentrations (N, P, Mg) of three litter types except for potassium (K) increased compared with initial nutrient concentrations of litter over the study period. Compared with Q. serrata litter, nutrients (N, P, K, Ca, Mg) in C. laxiflora and C. cordata litter were released rapidly. The results suggest that litter mass loss and nutrient dynamic processes among tree species vary considerably in the same site conditions.

Long term decomposition and nutrients dynamics of Quercus mongolica and Pinus densiflora leaf litter in Mt. Worak National Park (월악산 국립공원에서 신갈나무와 소나무 낙엽의 장기적 분해 및 영양염류 동태)

  • Won, Ho-Yeon;Kim, Deok-Ki;Lee, Kyu-Jin;Park, Sang-Bong;Choi, Joong-Suk;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.566-573
    • /
    • 2014
  • Decay rate and nutrient dynamics during leaf litter decomposition of deciduous broad leaf Quercus mongolica and evergreen needle leaf Pinus densiflora were investigated for 69 months from December 2005 to September 2011 in Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. Percent remaining weight of Q. mongolica and P. densiflora leaf litter after 69 months elapsed was $35.4{\pm}2.3%$ and $16.1{\pm}1.3%$, respectively. Decomposition of P. densiflora leaf litter was significantly faster than that of Q. mongolica leaf litter. Decay constant (k) of Q. mongolica and P. densiflora leaf litter after 69 months elapsed was 5.97 and 10.50, respectively. Initial C/N and C/P ratio of Q. mongolica leaf litter was 43.1 and 543.9 respectively. After 69 months elapsed, C/N and C/P ratio of decomposing Q. mongolica leaf litter decreased to 8.7 and 141.2, respectively. Initial C/N and C/P ratio of P. densiflora leaf litter was 151.2 and 391.4, respectively. After 69 months elapsed, C/N and C/P ratio of decomposing P. densiflora leaf litter decreased to 22.9. and 136.5. respectively. Initial concentration of N, P, K, Ca and Mg in leaf litter was 9.30, 0.23, 2.36, 3.14, 1.11 mg/g in Q. mongolica, and 3.02, 0.09, 1.00, 3.84, 0.62 mg/g in P. densiflora, respectively. Initial concentration of N and P in Q. mongolica leaf litter was significantly higher than those in P. densiflora. After 69 months elapsed, remaining N, P, K, Ca and Mg in decomposing leaf litter were 73.8, 60.9, 17.2, 20.3, 35.1 % in Q. mongolica, and 69.5, 75.3, 12.3, 10.9, 10.8 % in P. densiflora, respectively.

Soil Microarthropod Community in the Process of Needle Leaf Decomposition in Korean Pine(Pinus koraiensis) Forest of Namsan and Kwangreung (남산과 광릉수목원의 잣나무림에서 낙엽분해과정에 관련된 토양미소절지동물군집)

  • Bae, Yoon-Hwan;Lee, Joon-Ho
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 1999
  • Two years-study with litter bag (mesh size : 0.4 mm, 1.7 m) was carried out from Nov., 1996 to Sept., 1998 to investigate the soil microarthropod community in the process of needle leaf secomposition of Korean pine (Pinus koraiensis) forest in Namsan and Kwangreung, where were supposed to be under different environmental selective pressures. Soil arthropoda collected from litter bags were sorted into suborders or higher taxa. Acari and Collembola were dominant groups, which were 61-68% and 27-35% of total soil arthropod in their numbers, respectively. Among Acari, Oribatida was major group, and Gamasida and Actinedida were minor groups. Abundance of Acari was a little higher in Kwangreng than in Namsan. But there was not significant difference between the arthropod community structure of Namsan and Kwangreng forest. And the different mesh sizes (0.4 mm and 1.7 mm) of litter bags could not make significantly different community structures in the litter bags. One taxon showed different pattern of population dynalics from another. But Oribatida, Gamasida and Collembola showed peak density in July, 1997. All taxa showed lower population densities in cold season i.e. Nov., Jan. and March. There was not significant difference in decomposition rate between Namsan and Kwangreng forest, and between mesh sizes of litter bags. % residual mass of needle leaf was about 40% at 22 months after litter fall.

  • PDF

Decay Rate and Nutrient Dynamics during Litter Decomposition of Quercus acutissima and Quercus mysinaefolia (상수리나무와 가시나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화)

  • Won, Ho-Yeon;Oh, Kyung-Hwan;Pyo, Jae-Hoon;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2012
  • Decay rate and nutrient dynamics during leaf litter decomposition of deciduous Quercus acutissima and evergreen Quercus mysinaefolia were studied for 24 months from December 2008 to December 2010 in Gongju, Chungnam Province, Korea. Percent remaining weight of Q. acutissima and Q. mysinaefolia leaf litter after 24 months elapsed was $46.3{\pm}5.4%$ and $37.8{\pm}2.5%$, respectively. Decomposition of evergreen Q. mysinaefolia leaf litter was significantly faster than that of deciduous Quercus acutissima leaf litter. Decay constant(k) of Q. acutissima and Q. mysinaefolia leaf litter after 24 months elapsed was 0.38 and 0.49, respectively. Initial C/N and C/P ratio of Q. mysinaefolia leaf litter was significantly lower than those of Q. acutissima leaf litter. Initial C/N and C/P ratio of Q. acutissima leaf litter was 46.8 and 270.9, respectively. After 24 months elapsed, C/N and C/P ratio of decomposing Q. acutissima leaf litter decreased to 22.5 and 104.2, respectively. Initial C/N and C/P ratio of Q. mysinaefolia leaf litter was 22.4 and 41.7, respectively. After 24 months elapsed, C/N and C/P ratio of decomposing Q. mysinaefolia leaf litter decreased to 16.7 and 89.7, respectively. Initial concentration of N, P, K, Ca and Mg in leaf litter was 8.31, 0.44, 4.18, 9.38, 1.37 mg/g in Q. acutissima, and 19.88, 2.73, 7.06, 8.24, 2.61 mg/g in Q. mysinaefolia, respectively. Initial concentration of N and P in Q. mysinaefolia leaf litter was significantly higher than those in Q. acutissima. After 24 month elapsed, remaining N, P, K, Ca and Mg were 100.91, 114.75, 32.99, 50.63, 15.51% in Q. acutissima, and 43.22, 11.35, 12.98, 82.22, 44.23% in Q. mysinaefolia, respectively. N and P in decomposing leaf litter was immobilized in Q. acutissima, and mineralized in Q. mysinaefolia.

Decay Rate and Nutrient Dynamics during Litter Decomposition of Quercus acutissima in Gongju and Jinju (공주와 진주지역에서 상수리나무 낙엽의 분해율 및 분해과정에 따른 영양염류 함량 변화)

  • Won, Ho-Yeon;Oh, Kyung-Hwan;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.537-545
    • /
    • 2012
  • Decay rate and nutrient dynamics during leaf litter decomposition of deciduous Quercus acutissima were compared between Gongju and Jinju for 33 months from December 2008 through March 2011. Percent remaining weight of Q. acutissima leaf litter after 33 months elapsed in Gongju and in Jinju was $41.2{\pm}0.4%$ and $28.3{\pm}0.6%$, and decay constant (k) was 0.39 and 0.61, respectively. Decomposition in Jinju was significantly faster than that in Gongju. This seemed to be related to higher temperature and precipitation in Jinju than those in Gongju during the experimental period. Initial C/N and C/P ratio of Q. acutissima leaf litter was 46.8 and 270.9, respectively. After 33 months elapsed, C/N and C/P ratios in Gongju decreased to 22.0 and 106.8, and those in Jinju decreased to 19.2 and 170.2, respectively. Initial concentration of N, P, K, Ca and Mg in Q. acutissima leaf litter was 8.31, 0.44, 4.18, 9.38, 1.37 mg/g, respectively. After 33 month elapsed, remaining N, P, K, Ca and Mg were 91.0, 85.4, 30.2, 47.9, 11.7% in Gongju, and 67.0, 54.2, 19.9, 30.0, 40.8% in Jinju, respectively. Except for Mg, remaining nutrients of decomposing leaf litter in Jinju were lower than those in Gongju. In case of N and P, initial immobilization was observed, however, only mineralization was observed in K, Ca and Mg during the whole experimental period.

Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea (안동 사문암지대의 중금속 함유 낙엽의 분해)

  • Ryou, Sae-Han;Kim, Jeong-Myung;Cha, Sang-Seub;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2010
  • The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

Nutrient Dynamics in Decomposing Leaf Litter and Litter Production at the Long-Term Ecological Research Site in Mt. Gyebangsan (계방산 장기생태조사지의 낙엽 생산량 및 낙엽 분해에 따른 양분 동태)

  • Lee, Im-Kyun;Lim, Jong-Hwan;Kim, Choon-Sig;Kim, Young-Kul
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.585-591
    • /
    • 2006
  • We measured the litterfall quantity and investigated the nutrient dynamics in decomposing litter for three years at the LTER sites installed in a deciduous broadleaf natural forest in Mt. Gyebangsan, South Korea. Litterfall production was significantly different among the sampling dates, whereas it was not significantly different among the years. The total annual mean litterfall production for three years was 6,593 kg $ha^{-1}$ $yr^{-1}$ and leaf litter accounted for 82.6% of the litterfall. The leaf litter quantity was highest in Quercus mongolia, followed by leaf of other species, Betula schmidtii, Kaplopanax pictus, Acer pseudo-sieboldianum, etc., which are dominant tree species in the site. The mass loss from the decomposition of leaf litter was fastest in Cortinus controversa (100%), followed by A. preudo-sieboldianum, K. pictus, and B. schmidtii. 100% of litter for C. controversa, 96.1% for A. pseudo-sieboldianum, 92.8% for K. pictus decomposed, while 66.2% of litter for Q. mongolia decayed for 1,003 days. The lower rate of the mass loss in the litter of Q. mongolia may be attributed to the difference in substrate quality, such as lower nutrient concentrations compared with those of other tree species. The concentrations of N, P, and Ca for five litter types increased over time, while the concentrations of K and Mg decreased over time. Compared with the nutrients in the litter of Q. mongolia, the nutrients (N, P, K, Ca, Mg) in the litter of other species, C. controversa, A. pseudo-sieboldianum, and K. pictus, were released more rapidly. The results showed that the mass loss and the nutrient dynamics in the litter are variable depending on the tree species even in the same site conditions.

Net Primary Production, Annual Accumulation of Organic Carbon and Leaf Decomposition in Salix Plant Community (하천변 버드나무군락의 1차 순 생산량, 유기탄소 흡수량과 낙엽분해)

  • Han, Seung-Ju;Kim, Hyun-Woo;Kim, Hae-Ran;Kim, Hyea-Ju;Han, Dong-Uk;Park, Sang-Kyu;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • We measured net primary productivity, annual accumulation of organic carbon and leaf decomposition of Salix community in the flood plain of the Han River and the Nakdong River. Net primary productivity, annual accumulation of organic carbon of the Salix community were 22.5ton/ha/yr(16.7ton/ha/yr-31.2ton/ha/yr) and 9.7ton C/ha/yr(7.5ton C/ha/yr-14.0ton C/ha/yr) respectively, which showed the highest values among the woody plant communities reported in the Korea. It means that planting Salix in the flood plain of the river is the best way to remove carbon dioxides. The faster leaf decomposition occurred around, under and the herb of Salix community in order. Leaf decomposition rate of Salix was higher than that of mesophytes, but lower than that of hydrophytes.

Mass Loss and Nutrients Dynamics During the Litter Decomposition in Kwangnung Experimental Forest (광릉(光陵) 시험림(試驗林) 내(內)의 임분별(林分別) 낙엽(落葉)의 분해(分解)와 분해과정(分解過程)에 따른 영양염류(營養鹽類)의 변화(變化))

  • You, Young-Han;Namgung, Jeong;Lee, Yun-Young;Kim, Jeong-Hee;Lee, Jong-Young;Mun, Hyeong-Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • Mass loss and dynamics of mineral nutrient during decomposition of deciduous leaves and 3 species of needles were investigated for 38 months from October in 1992 to November in 1995 in Kwangneung, Korea. After 38 months, the remaining mass of deciduous leaves, Pinus koraiensis, Pinus rigida and Abies holophylla was 16.2%, 29.8%, 33.5% and 53.9%, respectively. The decay rate (k) of deciduous leaves, Pinus koraiensis, Pinus rigida and Abies holophylla was 0.61, 0.40, 0.37, $0.21yr^{-1}$, respectively. The lowest decay rate in fir needle might be, in part, due to low N concentration. N concentration of the decomposing litter increased during the experimental period except for P. rigida. Deciduous leaves showed a short immobilization period during the early stage of decomposition, and big-cone pine and pitch pine had no immobilization period. However, there was no net N mineralization in fir litter. P increased during the experimental period for all litter. Except for deciduous leaves, there was no net mineralization period. In case of deciduous leaves, however, remaining P after 38 months was 53% of the initial P capital. Remaining cations of the decomposing litter after 38 months were lower than those of initial contents.

  • PDF

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii (한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화)

  • Lee, Il-hwan;Jo, Soo-un;Lee, Young-sang;Won, Ho-yeon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.374-382
    • /
    • 2021
  • In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.