Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea

안동 사문암지대의 중금속 함유 낙엽의 분해

  • Ryou, Sae-Han (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Kim, Jeong-Myung (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Cha, Sang-Seub (Department of Life Science, College of Natural Science, Chung-Ang University) ;
  • Shim, Jae-Kuk (Department of Life Science, College of Natural Science, Chung-Ang University)
  • 류새한 (중앙대학교 자연과학대학 생명과학과) ;
  • 김정명 (중앙대학교 자연과학대학 생명과학과) ;
  • 차상섭 (중앙대학교 자연과학대학 생명과학과) ;
  • 심재국 (중앙대학교 자연과학대학 생명과학과)
  • Received : 2010.06.08
  • Accepted : 2010.08.26
  • Published : 2010.08.31

Abstract

The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

본 연구는 사문암 토양의 화학적 성질과 토양미생물량 및 토양효소 등 토양의 생물학적 활성을 대조구의 비사문암 토양과 비교하고, 사문암과 비사문암에서 공통으로 서식하는 새(Arundinella hirta)와 억새(Miscanthus sinensis var. purpurascens)의 낙엽이 입지가 다른 사문암지역과 비사문암 지역에서 분해될 때 분해율의 차이가 어떻게 유발되는지 9개월 동안 야외에서 교차 실험하였다. 사문암 토양은 비사문암 토양에 비하여 높은 pH, 낮은 dehydrogenase 와 urease활성을 나타내었으며 alkaliphosphatase의 활성은 높았다. 두 토양에서 microbial biomass-C와 N의 차이는 유의하지 않았으나 사문암 토양에서 microbial biomass-N함량이 더 높게 나타나 비사문암 토양에서 보다 낮은 토양의 C/N을 나타내는 원인이 되었다. 사문암지역에서의 낙엽분해실험에서는 사문암지역에서 획득한 새와 억새 낙엽이 각각 39.8%, 38.5%의 중량감소를 보였으며, 비사문암 토양에서 획득한 낙엽은 각각 41.1%, 41.7%의 중량감소를 나타내었다. 비사문암지역에서의 낙엽분해실험에서는 사문암낙엽이 46.8%, 42.2% 그리고 비사문암낙엽은 44.8%, 37.4%의 중량감소를 각각 보였다. 이러한 결과는 중금속을 포함하는 토양의 영향보다는 낙엽의 질적 차이가 분해율에 더 큰 영향을 미쳤음을 나타내준다. 일반적으로 낮은 C/N을 갖는 낙엽이 더 빨리 분해된다는 결과와는 달리 낮은 C/N을 갖는 사문암낙엽의 분해가 느린 것은 낙엽에 포함된 중금속의 저해가 낙엽의 C/N이나 lignin/N과 같은 낙엽의 질적 차이에서 유발되는 낙엽분해의 저해보다 큰 영양을 미친다는 결과를 보여주었다. 또한 낙엽분해가 진행되는 동안 낙엽내의 Cr, Ni과 Mg, Fe의 농도는 점차 증가하였으며 이러한 경향은 사문암지역에서 현저하였다.

Keywords

References

  1. Bardgett, R.D., T.W. Speir, D.J. Ross, G.W. Yeates and H.A. Kettles(1994) Impact of pasture contamination by copper, chromium and arsenic timber preservative on soil microbial properties and nematodes. Biology and Fertility of Soils 18:71-79. https://doi.org/10.1007/BF00336448
  2. Berg, B. and C. McClaugherty(2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin, 286pp.
  3. Berg, B., G. Ekbohm, B. Soderstrom and H. Staaf(1991) Reduction of decomposition rates of scots pine needle litter due to heavy-metal pollution. Water, Air and Soil Pollution 59:165-177.
  4. Berg, B., M. Berg, P. Bottner, E. Box, A. Breymeyer, R.C. de Anta, M.M. Couteaux, A. Gallardo, A. Escudero, W. Kartz, M. Madeira, E. Malkonen, C. McClaugherty, V. Meentemeyer, F. Munoz, P. Piussi, J. Remacle and A.V. de Santo(1993) Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20: 127-159. https://doi.org/10.1007/BF00000785
  5. Brooks, R. R.(1987) Serpentine and its vegetation. A multi-disciplinary approach. Dioscorides Press, Phytogeography and physiology series, volume 1, Oregon, 454pp.
  6. Chander, K. and P.C. Brookes(1991a) Microbial biomass dynamics during decomposition of glucose and maize in metal-contaminated soils. Soil Biology and Biochemistry 23: 917-925. https://doi.org/10.1016/0038-0717(91)90171-F
  7. Chander, K. and P.C. Brookes(1991b) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil. Soil Biology and Biochemistry 23: 927-932. https://doi.org/10.1016/0038-0717(91)90172-G
  8. Cotrufo, M.F., A.V. de Santo, A. Alfani, G. Bartoli and A. de Cristofaro(1995) Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environmental Pollution 89: 81-87. https://doi.org/10.1016/0269-7491(94)00041-B
  9. Eivazi, F. and M.A. Tabatabai(1977) Phosphatases in soils. Soil Biology and Biochemistry 9: 167-172. https://doi.org/10.1016/0038-0717(77)90070-0
  10. Freedman, B. and T.C. Huchinson(1980) Effects of smelter pollution on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Can. J. Bot. 58: 1722-1736. https://doi.org/10.1139/b80-200
  11. Giller, K.E., E. Witter and S.P. McGrayh(1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils : a review. Soil Biol. Biochem. 30: 1389-1414. https://doi.org/10.1016/S0038-0717(97)00270-8
  12. Griffiths, A.J., D.E. Huches and D. Thomas(1974) Some aspects of microbial resistance to metal pollution. In: M.J. Jones(ed.). Minerals and the Environment. Institution of Mining and Metallurgy. pp. 387-394.
  13. Hattori, J.(1996) Differences in the influence of cadmium on the decomposition of various types of organic materials in soil. Soil Science and Plant Nutrition 42: 737-743. https://doi.org/10.1080/00380768.1996.10416621
  14. Heal O.W., J.M. Anderson and M.J. Swif(1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G. and K. E. Giller (eds.). Driven by Nature: Plant Litter Quality and Decomposition. CAB International Wallingford, UK, pp. 3-45.
  15. Helrich, K.(1990) Official methods of the association of official analytical chemists. AOAC. Inc., USA.
  16. Impellitteri, C.A. and H.E. Allen(2001) Organic matter control of soil-soil solution metal partitioning. Biogeochemistry of trace elements, ICOBTE.
  17. Insam, H, T.C. Hutchinson and H.H. Reber(1995) Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biology and Biochemistry 28: 691-694.
  18. Joergensen, R.G. and P.C. Brookes(1990) Ninhydrin-reactive measurements of microbial biomass in 0.5M K2SO4 soil extracts. Soil Biology and Biochemistry 22: 1023-1027. https://doi.org/10.1016/0038-0717(90)90027-W
  19. Johnson, D. and Q. Hale(2004) White birch(Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environmental Pollution 127: 65-72. https://doi.org/10.1016/S0269-7491(03)00260-4
  20. Jordan, M.J. and M.P. Lechevalier(1975) The effect of the earthworm Dendrobaena rubida on the solubility of lead, zinc and calcium in heavy metal contaminated soil in Wales. J. Soil Sci. 26: 313-318. https://doi.org/10.1111/j.1365-2389.1975.tb01955.x
  21. Kandeler, E., C. Kampichler and O. Horak(1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soil 23: 299-306. https://doi.org/10.1007/BF00335958
  22. Khan, K.S. and R.G. Joergensen(2006) Decomposition of heavy metal contaminated nettles(Urica dioica L.) in soils subjected heavy metal pollution by river sediments. Chemosphere 65: 981-987. https://doi.org/10.1016/j.chemosphere.2006.03.038
  23. Kim, J.M. and J.K. Shim(2008) Toxic effects of serpentine soils on plant growth. J. Ecol. Field Biol. 31: 327-331. https://doi.org/10.5141/JEFB.2008.31.4.327
  24. Kim, J.M., K.C. Yang, S.K. Choi, M.H. Yeon, J.H. Shin and J.K. Shim(2006) Plant uptake of heavy metals in Andong serpentine soil. Korean J. Environ. Biol. 24: 408-415.
  25. Kim, M.H., E.S. Min and S.H. Song(1997) Heavy metal content of Gypsophila oldhamiana growing on soil derived from serpentine. Korean J. Eco. 20: 385-391.
  26. Kim, Y.B.(1998) Studies on the vegetation structure of serpentine area in Andong, South Korea. Ph. D. thesis, Chung-Ang University, Seoul, Korea, 111pp.
  27. Lombardi, L. and L. Sebastiani(2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Science 168: 797-802. https://doi.org/10.1016/j.plantsci.2004.10.012
  28. Martin, R.C.(1993) Soil sampling and methods of analysis. Lewis Publishers.
  29. McEnroe, N.A. and H.S. Helmisaari(2001) Decomposition of coniferous forest litter along a heavy metal pollution gradient, south-west Finland. Environmental Pollution 113: 11-18. https://doi.org/10.1016/S0269-7491(00)00163-9
  30. Mersi, W. and F. Schinner(1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils 11: 216-220. https://doi.org/10.1007/BF00335770
  31. Ok, S.S.(1992) A study on the origin of the Andong serpentinite deposits. Ph. D. thesis, University of Pusan, Pusan, Korea, 113pp.
  32. Olson, J.S.(1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322-331. https://doi.org/10.2307/1932179
  33. Ross, D.J. and G.P. Sparling(1993) Comparison of methods to estimate microbial C and N in litter and soil under Pinus radiata on a coastal sand. Soil Biology and Biochemistry 25: 1591-1599. https://doi.org/10.1016/0038-0717(93)90015-4
  34. Rowland, A.P. and J.D. Roberts(1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Commun. Soil Sci. Plant Anal. 25: 269-277. https://doi.org/10.1080/00103629409369035
  35. Sardans, J. and J. Penuelas(2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 37: 455-461. https://doi.org/10.1016/j.soilbio.2004.08.004
  36. Sariyildiz, T. and J.M. Anderson(2003) Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry 35: 391-399. https://doi.org/10.1016/S0038-0717(02)00290-0
  37. Vance, E.D., P.C. Brookes and D.S. Jenkinson(1987) An extraction method for measuring soil microbial biomass-C. Soil Biology and Biochemistry 19: 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  38. www.kma.go.kr.
  39. Zimmer, M.(2002) Is decomposition of woodland leaf litter influenced by its species richness. Soil Biology and Biochemistry 34: 277-284. https://doi.org/10.1016/S0038-0717(01)00173-0