DOI QR코드

DOI QR Code

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii

한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화

  • 이일환 (국립생태원 기후생태연구실 장기생태연구팀) ;
  • 조수언 (수원시 상수도사업소) ;
  • 이영상 (국립생태원 기후생태연구실 장기생태연구팀) ;
  • 원호연 (국립생태원 기후생태연구실 장기생태연구팀)
  • Received : 2021.08.12
  • Accepted : 2021.09.14
  • Published : 2021.09.30

Abstract

In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.

공주지역에 조림된 리기다소나무 군락에서 국내 대표 수종인 소나무와 방풍림으로 주로 조림되는 곰솔 낙엽의 분해율 및 분해과정에 따른 영양염류의 함량 변화를 파악하였다. 분해 60개월 경과 후 소나무 낙엽과 곰솔 낙엽의 잔존율은 각각 42.12±5.30과 24.79±1.98%로 소나무와 곰솔의 낙엽 분해율은 곰솔 낙엽의 분해가 소나무 낙엽의 분해에 비해 빠르게 일어났다. 60개월 경과 후 소나무 낙엽과 곰솔 낙엽의 분해상수(k)는 각각 3.02과 3.59로 곰솔 낙엽의 분해상수가 다소 높게 나타났다. 소나무 낙엽의 분해과정에 따른 C/N, C/P 비율은 초기에 각각 14.4, 144.1이었으나 60개월 경과 후에는 각각 2.26와 40.1로 점차 감소하였으며, 곰솔 낙엽의 경우 초기 C/N, C/P 비율은 각각 14.4와 111.3로 나타났고, 60개월 경과 후에는 각각 3.06와 45.8로 나타났다. 낙엽의 초기 N, P, K, Ca, Mg 함량은 소나무 낙엽에서 각각 3.07, 0.31, 1.51, 16.56, 2.03 mg g-1, 곰솔 낙엽에서 각각 3.02, 0.39, 0.99, 19.55, 1.48mg g-1로 소나무 낙엽과 곰솔 낙엽의 질소와 인의 함량은 유사하였다. 60개월 경과 후 N, P, K, Ca, Mg의 잔존율은 소나무 낙엽에서 각각 231.08, 130.13, 35.68, 48.58, 36.03%이었고, 곰솔 낙엽에서 각각 143.91, 74.02, 28.59, 45.08, 44.99%로 나타났다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립생태원의 지원을 받아 수행하였습니다(NIE-전략연구-2021-02).

References

  1. Alhamd L, S Arakaki and A Hagihara. 2004. Decomposition of leaf litter of four tree species in a subtropical evergreen broad -leaved forest, Okinawa Island, Japan. For. Ecol. Manag. 202:1-11. https://doi.org/10.1016/j.foreco.2004.02.062
  2. Baker TT, BG Lockaby, WH Conner, CE Meier, JA Stanturf and MK Burke. 2001. Leaf litter decomposition and nutrient dynamics in four southern forested floodplain communities. Soil Sci. Soc. Am. J. 65:1334-1347. https://doi.org/10.2136/sssaj2001.6541334x
  3. Berg B and H Staaf. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33:163-178.
  4. Black CA, DD Evans and JL White. 1965. Methods of Soil Analysis: Chemical and Microbiological Properties. American Society of Agronomy. Madison, WI.
  5. Bocock KL. 1964. Changes in the amount of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of soil fauna. J. Ecol. 52:273-284. https://doi.org/10.2307/2257595
  6. Cotrufo MF, MD Wallenstein, CM Boot, K Denef and E Paul. 2013. The Microbial Efficiency Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19:988-995. https://doi.org/10.1111/gcb.12113
  7. Daubenmire RF. 1974. Plant and Environment. 3rd eds. Wiley. New York.
  8. Edmonds RL and TB Thomas. 1995. Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest, Olympic National Park, Washington. Can. J. For. Res. 25:1049-1057. https://doi.org/10.1139/x95-115
  9. Fahey TJ. 1983. Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp. latifolia) ecosystems, southeastern Wyoming. Ecol. Monogr. 53:51-72. https://doi.org/10.2307/1942587
  10. Gosz JR, GE Likens and FH Bormann. 1973. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire. Ecol. Monogr. 43:173-191. https://doi.org/10.2307/1942193
  11. Hisabae M, S Sone and M Inoue. 2011. Breakdown and macroinvertebrate colonization of needle and leaf litter in conifer plantation streams in Shikoku, southwestern Japan. J. For. Res. 16:108-115. https://doi.org/10.1007/s10310-010-0210-0
  12. Kim CS, JH Lim and JH Shin. 2003. Nutrient dynamics in litterfall and decomposing leaf litter at the Kwangneung deciduous broad-leaved natural forest. Korean J. Agric. For. Meteorol. 5:87-93.
  13. Kim JK and NK Chang. 1989. Litter production and decomposition in the Pinus Rigida plantation in Mt. Kwan-ak. Korean J. Ecol. 12:9-20.
  14. Kimmins JP. 1987. Forest Ecology. Macmillan Publishing Company. New York.
  15. Klemmedson JO, CE Meier and RE Campbell. 1985. Needle decomposition and nutrient release in ponderosa pine ecosystems. For. Sci. 31:647-660.
  16. Lee EK, JH Lim, CS Kim and YK Kim. 2006. Nutrient dynamics in decomposing leaf litter and litter production at the long-term ecological research site in Mt. Gyebang. J. Ecol. Environ. 29:585-591.
  17. Melillo JM, JD Aber and JF Muratore. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621-626. https://doi.org/10.2307/1936780
  18. Millar CS. 1974. Decomposition of coniferous leaf litter. pp. 105-128. In: Biology of Plant Litter Decomposition. Vol 1. Academic Press. London and New York.
  19. Mun HT and JH Pyo. 1994. Dynamics of nutrient and chemical constituents during litter decomposition. Korean J. Ecol 17:501-511.
  20. Mun HT and HT Joo. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forests. Korean J. Ecol. 17:345-353.
  21. Mun HT. 2009 Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. J. Ecol. Environ. 32:123-127. https://doi.org/10.5141/JEFB.2009.32.2.123
  22. Namgung J, AR Han and HT Mun. 2008. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park. J. Ecol. Environ. 31:291-295. https://doi.org/10.5141/JEFB.2008.31.4.291
  23. Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:321-331. https://doi.org/10.2307/1932179
  24. Ono K, S Hiradate, S Morita, K Ohse and K Hirai. 2011. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant Soil 338:171-181. https://doi.org/10.1007/s11104-010-0397-z
  25. Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133-149. https://doi.org/10.1007/s10533-010-9439-0
  26. Schlesinger WH. 1985. Decomposition of chaparral shrub foliage. Ecology 66:1353-1359. https://doi.org/10.2307/1939188
  27. Seereeram S and P Lavender. 2003. Analysis of Leaf Litter to Establish Its Suitability for Compositing to Produce a Commercially Saleable Product. A Report Prepared for SWAP. Aqua Enviro. Wakefield, UK. p. 18.
  28. Swift MJ, OW Heal and JM Anderson. 1979. Decomposition in Terrestrial Ecosystems. Studies in Ecology Vol 5. University of California Press. Berkley and Los Angeles. p. 372.
  29. Wang Z, X Yin and X Li. 2015. Soil mesofauna effects on litter decomposition in the coniferous forest of the Changbai Mountains, China. Appl. Soil Ecol. 92:64-71. https://doi.org/10.1016/j.apsoil.2015.03.010
  30. Won HY, DK Kim, KJ Lee, SB Park, JS Choi and HT Mun. 2014. Long term decomposition and nutrients dynamics of Quercus mongolica and Pinus densiflora leaf litter in Mt. Worak National Park. Korean J. Environ. Ecol. 28:566-573. https://doi.org/10.13047/KJEE.2014.28.5.566
  31. Won HY, YS Lee, SU Jo, IH Lee, SD Jin and SY Hwang. 2018. Decay rate and nutrient dynamics during litter decomposition of Pinus rigida and Pinus koraiensis. Korean J. Environ. Ecol. 32:557-565. https://doi.org/10.13047/KJEE.2018.32.6.557
  32. Xu X, E Hirata, T Enoki and Y Tokashiki. 2004. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 173:161-170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70
  33. Yoo JS. 1991. Weight loss and nutrient dynamics during litter decomposition of Pinus thunbergii and Castanea crenata. M.S. Dissertation. Kongju National University. Kongju, Korea.