• Title/Summary/Keyword: 나노 기술

Search Result 2,794, Processing Time 0.042 seconds

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

A case study on the application of service design in a tertiary care hospital - Focusing on patient and Medical staff experience data at a Regional emergency medical center - (상급종합병원 서비스디자인 적용 단일 사례연구 -권역응급의료센터의 환자와 의료진 경험 데이터를 중심으로-)

  • Choi, Jugnmin;Ahn, Jinho
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.113-130
    • /
    • 2023
  • This study is a single case study of the application of service design in a regional emergency medical centre of a senior general hospital, focusing on the experiences of patients and medical staff. It aims to measure and improve the experience of healthcare services using service design techniques and to verify their effectiveness. A qualitative case study centred on ethnography and design workshops was conducted to collect in-depth experience data from patients and medical staff. The study identified key experiential differences between patients and healthcare workers, with a particular focus on the challenges faced in emergency medical services. The qualitative data collected through patient and healthcare worker interviews and design thinking workshops were analysed and incorporated into the design in order to understand the complex dynamics of the regional emergency medical centre environment. The results of the study highlighted the need to improve communication, manage patient flow, and improve the environment in three main aspects of the current state of design reflecting the needs of patients and medical staff. By analysing the differences in the specific needs of the two groups of patients and medical staff, a design-led implementation process can be applied to improve the services of the regional emergency medical centre. This study highlights the role and importance of design in healthcare and provides an efficient way to bridge the gap between theoretical research and practical design implementation. This will contribute to creating a faster, more effective, and more satisfying healthcare experience. It is hoped that this will be a new opportunity to see service design as a key to a new innovation process for the satisfaction of both patients and medical staff.

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

A Study on the Performance Analysis of AIoT High-Efficiency Streetlamp for Carbon Emissions (탄소배출권용 AIoT 고효율 가로등 성능분석 연구)

  • Seung-Ho Park;Seong-Uk Shin;Kyung-Sunl Yoo
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.13-19
    • /
    • 2023
  • Following the signing of the Paris Agreement on Climate Change (UNFCCC, 2015), the world is expanding greenhouse gas reduction activities through comprehensive participation that includes not only developed countries but also developing countries. Major countries around the world are placing high expectations on the effectiveness of total carbon emissions regulation through the carbon emissions market. However, in order to obtain carbon credits, third-party verification is required based on quantitative carbon reduction data. Accordingly, in this paper, we developed an AIoT high-efficiency street light for carbon emissions and conducted a performance analysis study to measure the luminous efficiency of the lighting fixture. To obtain carbon emissions rights, we used high-efficiency LED PKG, developed our own high-voltage PFC, and developed high-efficiency lighting fixtures capable of communication. For communication, the 2.4GHz LoRa method was adopted between the lighting fixture and the gateway. Lens design was conducted through simulation of Korea Expressway Corporation's standard streetlight types A, B, and C. The performance of the streetlight was verified as being more efficient than other existing products through the measurement of luminous efficiency by an accredited rating agency, and it is expected that carbon emissions rights will be obtained by reducing electrical energy through this.

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

Evaluation on the Usefulness of Alternative Radiopharmaceutical by Particle size in Sentinel Lymphoscintigraphy (감시림프절 검사 시 입자크기에 따른 대체 방사성의약품의 유용성평가)

  • Jo, Gwang Mo;Jeong, Yeong Hwan;Choi, Do Cheol;Shin, Ju Cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.36-41
    • /
    • 2016
  • Purpose Sentinel lymphoscintigraphy (SLS) was using only $^{99m}Tc-phytate$. If the supply is interrupted temporarily, there is no alternative radiopharmaceuticals. The aim of this study measure the particle size of radiopharmaceuticals and look for radiopharmaceuticals which can be substituted for $^{99m}Tc-phytate$. Materials and Methods The particle size of radiopharmaceuticals were analyzed by a nano-particle analyzer. This study were selected known radiopharmaceuticals to be useful particle size for SLS. We were divided into control and experimental groups using $^{99m}Tc-DPD$, $^{99m}Tc-MAG3$, $^{99m}Tc-DMSA$ with $^{99m}Tc-phytate$. For in-vivo experiment, radiopharmaceuticals were injected intradermally at both foot to perform lymphoscintigraphy. Imaging was acquired to dynamic and delayed static image and observe the inguinal lymph nodes with the naked eye. Results Particle size was measured respectively Phytate 105~255 nm (81.9%), MAG3 91~255 nm (98.7%), DPD 105~342 nm (77.3%), DMSA 164~ 342 nm (99.2%), MAA 1281~2305 nm (90.6%), DTPA 342~1106 nm (79.4%), and HDP 295~955 nm (94%). In-vivo delayed static image, inguinal lymph nodes of all experiment groups and two control groups are visible to naked eye. however, $^{99m}Tc-MAG3$ of control groups is not visible to naked eye. Conclusion We were analyzed to the particle size of the radiopharmaceuticals that are used in in-vivo. Consequently, $^{99m}Tc-DPD$, $^{99m}Tc-DMSA $are possible in an alternative radiopharmaceuticals of emergency.

  • PDF

Improved Method of License Plate Detection and Recognition using Synthetic Number Plate (인조 번호판을 이용한 자동차 번호인식 성능 향상 기법)

  • Chang, Il-Sik;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.453-462
    • /
    • 2021
  • A lot of license plate data is required for car number recognition. License plate data needs to be balanced from past license plates to the latest license plates. However, it is difficult to obtain data from the actual past license plate to the latest ones. In order to solve this problem, a license plate recognition study through deep learning is being conducted by creating a synthetic license plates. Since the synthetic data have differences from real data, and various data augmentation techniques are used to solve these problems. Existing data augmentation simply used methods such as brightness, rotation, affine transformation, blur, and noise. In this paper, we apply a style transformation method that transforms synthetic data into real-world data styles with data augmentation methods. In addition, real license plate data are noisy when it is captured from a distance and under the dark environment. If we simply recognize characters with input data, chances of misrecognition are high. To improve character recognition, in this paper, we applied the DeblurGANv2 method as a quality improvement method for character recognition, increasing the accuracy of license plate recognition. The method of deep learning for license plate detection and license plate number recognition used YOLO-V5. To determine the performance of the synthetic license plate data, we construct a test set by collecting our own secured license plates. License plate detection without style conversion recorded 0.614 mAP. As a result of applying the style transformation, we confirm that the license plate detection performance was improved by recording 0.679mAP. In addition, the successul detection rate without image enhancement was 0.872, and the detection rate was 0.915 after image enhancement, confirming that the performance improved.

Physiological Activity of Robinia pseudo acacia Leaf Extracts and Enhancement of Skin Permeation Using Polymer Micelles and Cell Penetrating Peptide (아카시아 잎 추출물의 생리 활성 및 고분자 미셀과 세포투과 펩티드를 적용한 피부흡수증진 효과)

  • Heo, Soo Hyeon;Park, Su In;An, Gyu Min;Shin, Moon Sam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • This study was conducted to evaluate physiological activity of Robinia pseudo-acacia leaf and its skin penetration using polymer micelles and skin penetrating peptide. After extraction with Robinia pseudo-acacia using the ethanol and distilled water, various physiological activities were examined. The total concentration of polyphenol compounds was determined to be 47.42 mg/g (ethanol extract), 56.88 mg/g (hydrothermal extract) and DPPH radical scavenging ability at $1,000{\mu}g/mL$ was 44.24% in ethanol extract and it is higher than value(41.50%) in hydrothermal extract. The elastase inhibitory assay showed concentration dependence and elastase inhibition of Robinia pseudo acacia leaf ethanol extract was 54.09%, which was the highest at $500{\mu}g/mL$. In the SOD-like experiments, the concentration-dependent results were showed and the SOD-like activity of the Robinia pseudo-acacia leaf ethanol extract was higher than that of the Robinia pseudo acacia leaf hydrothermal extract at all concentrations. At a concentration of $500{\mu}g/mL$, Robinia pseudo acacia leaf ethanol extract showed the highest SOD-like activity of 76.41%. The tyrosinase inhibition at $20{\mu}g/mL$ was determined to be 56.47% (ethanol extract), 23.05% (hydrothermal extract). In the antimicrobial experiments, the hydrothermal extract had no effect, but ethanol extract represented maximum clear zone of 11.00 mm in Propionbacterium acnes strain and maximum clear zone of 10.50 mm. in Bacillus subtilis strain. To solve the problem of insolubility and to improve skin penetration, PCL-PEG polymer micelles containing Robinia pseudo-acacia leaf ethanol extracts and 1.0% cell permeable peptide, hexa-D-arginine (R6) were successfully prepared with particle size of 108.23 and 126.47 nm and excellent skin permeation effects could be showed.

A Study on the Bioactivity Exploration of the Collected Marine Microorganisms and Microalgaes in Korea (우리나라에서 확보한 해양미생물과 미세조류에 대한 기초생리활성 연구)

  • Seung Sub Bae;Yong Min Kwon;Dawoon Chung;Woon-Jong Yu;Kichul Cho;Eun-Seo Cho;Yoon-Hee Jung;Yun Gyeong Park;Hyemi Ahn;Dae-Sung Lee;Jin-Soo Park;Jaewook Lee;Dong-Chan Oh;Ki-Bong Oh;EunJi Cho;Sang-Ik Park;You-Jin Jeon;Hyo-Geun Lee;Keun-Yong Kim;Sang-Jip Nam;Hyukjae Choi;Cheol Ho Pan;Grace Choi
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.136-149
    • /
    • 2023
  • Basic bioactivities (antioxidant, anti-inflammatory, antibacterial, anticancer, antiviral) were investigated from 370 strains of marine bacteria, fungi, and microalgae obtained from various marine environmental regions in Korea, and the activity results were obtained at the collection site, isolation source, and species level was compared. In the case of marine bacteria, strains belonging to the generally useful genera Streptomyces and Bacillus were observed to have particularly strong efficacy and useful resources were mainly isolated from marine sediments. In the case of marine fungi and microalgae, results showing strong species-specific activity were confirmed, and results showing efficacy-specific activity were also obtained. Based on these results, it is a research result that can facilitate priority access as a strategic material for industrial revitalization and the establishment of a strategy to secure resources based on usefulness when conducting research on chemicals that are selectively effective against specific diseases or when conducting resource-based research. In addition, we believe that by using these results as material for sale through the Marine BioBank (MBB), academia and industry can use them to help accelerate the revitalization of the marine bio industry.

The Preparation of Magnetic Chitosan Nanoparticles with GABA and Drug Adsorption-Release (GABA를 담지한 자성 키토산 나노입자 제조와 약물의흡수 및 방출 연구)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.541-549
    • /
    • 2020
  • The Drug Delivery System (DDS) is defined as a technology for designing existing or new drug formulations and optimizing drug treatment. DDS is designed to efficiently deliver drugs for the care of diseases, minimize the side effects of drug, and maximize drug efficacy. In this study, the optimization of tripolyphosphate (TPP) concentration on the size of Chitosan nanoparticles (CNPs) produced by crosslinking with chitosan was measured. In addition, the characteristics of Fe3O4-CNPs according to the amount of iron oxide (Fe3O4) were measured, and it was confirmed that the higher the amount of Fe3O4, the better the characteristics as a magnetic drug carrier were displayed. Through the ninhydrin reaction, a calibration curve was obtained according to the concentration of γ-aminobutyric acid (GABA) of Y = 0.00373exp(179.729X)-0.0114 (R2 = 0.989) in the low concentration (0.004 to 0.02 wt%) and Y = 21.680X-0.290 (R2 = 0.999) in the high concentration (0.02 to 0.1 wt%). Absorption was constant at about 62.5% above 0.04 g of initial GABA. In addition, the amount of GABA released from GABA-Fe3O4-CNPs over time was measured to confirm that drug release was terminated after about 24 hr. Finally, GABA-Fe3O4-CNPs performed under the optimal conditions were spherical particles of about 150 nm, and it was confirmed that the properties of the particles appear well, indicating that GABA-Fe3O4-CNPs were suitable as drug carriers.