Browse > Article
http://dx.doi.org/10.14695/KJSOS.2021.24.2.65

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities  

Yun, Ha-yeong (숭실대학교 스마트웨어러블공학과)
Kim, Sang-Un (숭실대학교 스마트웨어러블공학과)
Kim, Joo-Yong (숭실대학교 유기신소재파이버공학과)
Publication Information
Science of Emotion and Sensibility / v.24, no.2, 2021 , pp. 65-74 More about this Journal
Abstract
With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.
Keywords
Biological Signal Monitoring; CNT-Based Sensor; Dip-coating; Piezoelectric Resistance Sensor; Pressure Sensor; Smart Textile Sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, B., Tang, H., Luo, Z., Zhang, W., Tu, Q., & Jin, X. (2017). Wearable carbon nanotubes-based polymer electrodes for ambulatory electrocardiographic measurements. Sensors and Actuators A: Physical, 265, 79-85. DOI: 10.1016/j.sna.2017.08.036   DOI
2 Makowski, T., Kowalczyk, D., Fortuniak, W., Jeziorska, D., Brzezinski, S., & Tracz, A. (2014). Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose, 21(6), 4659-4670. DOI: 10.1007/s10570-014-0422-0   DOI
3 Cho, H. S., Park, S. H., Kang, D. H., Lee, K. H., Kang, S. J., Han, B. R., Oh, J. H., Lee, H. D., Lee, J. H., & Lee, J. W. (2015). Performance evaluation of fabric sensors for movement-monitoring smart clothing: Based on the experiment on a dummy. Korean Society for Emotion and Sensibility, 18(4), 25-34. DOI: 10.14695/kjsos.2015.18.4.25   DOI
4 Kang, I., Schulz, M. J., Kim, J. H., Shanov, V., & Shi, D. (2006). A carbon nanotube strain sensor for structural health monitoring. Smart Materials and Structures, 15(3), 737-748. DOI: 10.1088/0964-1726/15/3/009   DOI
5 Lee, H., Cho, H. -S., Lee, E., Jang, E., & Cho, G. (2019). Fabrication of strain sensor based on Graphene/Polyurethane nanoweb and respiration measurement. Korean Society for Emotion and Sensibility, 22(1), 15-22. DOI: 10.14695/kjsos.2018.22.1.15   DOI
6 Khan, S. U., Pothnis, J. R., & Kim, J. -K. (2013). Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 49, 26-34. DOI: 10.1016/j.compositesa.2013.01.015   DOI
7 Lee, J. I., & Jung, H. T. (2008). Technical status of carbon nanotubes composites. Korean Chemical Engineering Research, 46(1), 7-14.
8 Lim, T. H., Lee, S. H., & Yeo, S. Y. (2016). Highly conductive polymer/metal/carbon nanotube composite fiber prepared by the melt-spinning process. Textile Research Journal, 87(5), 593-606. DOI: 10.1177/0040517516632481   DOI
9 Kim, K., Jung, M., Jeon, S., & Bae, J. (2019). Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Materials and Structures, 28(6). DOI: 10.1088/1361-665X/ab1adf   DOI
10 Dong, W., Li, W., Tao, Z., & Wang, K. (2019). Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 203, 146-163. DOI: 10.1016/j.conbuildmat.2019.01.081   DOI
11 Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219-249. DOI: 10.1039/c8mh01062e   DOI
12 Kim, I., & Cho, G. (2018). Polyurethane nanofiber strain sensors viain situpolymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7). DOI: 10.1088/1361-665X/aac0b2   DOI
13 Spotnitz, M. E., Ryan, D., & Stone, H. A. (2004). Dip coating for the alignment of carbon nanotubes on curved surfaces. Journal of Materials Chemistry, 14(8). DOI: 10.1039/b308548a   DOI
14 Meyer, J., Lukowicz, P., & Troster, G. (2006, 11-14 Oct. 2006). Textile Pressure Sensor for Muscle Activity and Motion Detection. Paper presented at the 2006 10th IEEE International Symposium on Wearable Computers. DOI: 10.1109/ISWC.2006.286346