• Title/Summary/Keyword: 나노촉매

Search Result 529, Processing Time 0.032 seconds

Electrochemical Catalysts Test for Nano Pt Particles on Carbon Support Synthesized by a Polyol Process Parameter Control (폴리올 공정 제어에 의한 탄소기반 나노 Pt 촉매 담지 특성 평가)

  • Chae Lin Moon;Jin Woo Bae;Soon Mok Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.164-169
    • /
    • 2023
  • Nano Pt particles were dispersed on carbon-based supports by a polyol process for a catalyst application in a polymer electrolyte fuel cell. We tried to optimize the effect of pH on the electrostatic forces between the support and the Pt colloids. We investigated the relationship among the surface charges on the carbon support, the solution pH, and the concentration of a glycolate, and the Pt particle size. The produced catalyst with nano Pt particles on the support was evaluated by the long-term cyclic voltammetry (CV) performance test and compared with the results from a commercial catalyst. Our experimental results reveal that the pH-control can modify the particle size distribution and the dispersion of the nano Pt particles. This resulted in a cost-effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells better than a commercial catalyst system.

Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents (나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거)

  • Bae, Jong-Soo;Park, Joo-Won;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.646-650
    • /
    • 2009
  • Hydrocarbon gases generated from the gasification of waste could be converted into $CO_2$ and $H_2$ using reforming catalysts and then $CO_2$ was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for $CO_2$ removal, $Na_2CO_3$ was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of $Na_2CO_3$ loading improved adsorption of $CO_2$. Finally, the highest adsorption capacity per unit mass of $Na_2CO_3$ could be achieved when the loading of $Na_2CO_3$ reached up to 20wt%. When the content of $Na_2CO_3$ increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Effect of Terephthalaldehyde to Facilitate Electron Transfer in Heme-mimic Catalyst and Its Use in Membraneless Hydrogen Peroxide Fuel Cell (테레프탈알데하이드의 전자전달 강화효과에 따른 헴 단백질 모방 촉매의 성능 향상 및 이를 이용한 비분리막형 과산화수소 연료전지)

  • Jeon, Sieun;An, Heeyeon;Chung, Yongjin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.588-593
    • /
    • 2022
  • Terephthalaldehyde (TPA) is introduced as a cross liker to enhance electron transfer of hemin-based cathodic catalyst consisting of polyethyleneimine (PEI), carbon nanotube (CNT) for hydrogen peroxide reduction reaction (HPRR). In the cyclic voltammetry (CV) test with 10 mM H2O2 in phosphate buffer solution (pH 7.4), the current density for HPRR of the suggested catalyst (CNT/PEI/hemin/PEI/TPA) shows 0.2813 mA cm-2 (at 0.2 V vs. Ag/AgCl), which is 2.43 and 1.87 times of non-cross-linked (CNT/PEI/hemin/PEI) and conventional cross liker (glutaraldehyde, GA) used catalyst (CNT/PEI/hemin/PEI/GA), respectively. In the case of onset potential for HPRR, that of CNT/PEI/hemin/PEI/TPA is observed at 0.544 V, while those of CNT/PEI/hemin/PEI and CNT/PEI/hemin/PEI/GA are 0.511 and 0.471 V, respectively. These results indicate that TPA plays a role in facilitating electron transfer between the electrodes and substrates due to the π-conjugated cross-linking bonds, whereas conventional GA cross-linker increases the overpotential by interrupting electron and mass transfer. Electrochemical impedance spectroscopy (EIS) results also display the same tendency. The charge transfer resistance (Rct) of CNT/PEI/hemin/PEI/TPA decreases about 6.2% from that of CNT/PEI/hemin/PEI, while CNT/PEI/hemin/PEI/GA shows the highest Rct. The polarization curve using each catalyst also supports the superiority of TPA cross liker. The maximum power density of CNT/PEI/hemin/PEI/TPA (36.34±1.41 μWcm-2) is significantly higher than those of CNT/PEI/hemin/PEI (27.87±0.95 μWcm-2) and CNT/PEI/hemin/PEI/GA (25.57±1.32 μWcm-2), demonstrating again that the cathode using TPA has the best performance in HPRR.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine (승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구)

  • Ko, A-Hyun;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo;Choi, Hoi-Myung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.755-760
    • /
    • 2010
  • In this study, we mainly focused on the PM (Particulate Matter) emission characteristics of a diesel engine. To analyze particle behavior in the tail-pipe, particle emission was measured on the engine-out (downstream of turbocharger), each upstream and downstream both of DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particulate Filter). Moreover, particle emission contours on each sampling point were constructed. The reduction efficiency of particle number concentration and mass through the DOC and DPF was studied. Parameters such as EGR (Exhaust Gas Recirculation) and the main injection timing were varied in part load conditions and evaluated using the engine-out emissions. The DMS500 (Differential Mobility Spectrometer) was used as a particle measurement instrument that can measure particle concentrations from 5 nm to 1000 nm. Nano-particles of sizes less than 30 nm were reduced by oxidation or coagulated with solid particles in the tail-pipe and DOC. The DPF has a very high filtration efficiency over all operating conditions except during natural regeneration of DPF.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.

Photo-Electrochemical Hydrogen Production Over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-Catalysts (P와 B 이온이 함유된 나노 티타니아 광촉매의 광 전기화학적 수소 제조 성능)

  • Kwak, Byeong-Sub;Choi, Hee-Chan;Woo, Jae-Wook;Lee, Ju-Seung;An, June-Bum;Ryu, Si-Gyeong;Kang, Mi-Sook
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.78-82
    • /
    • 2011
  • For effectively photochemical hydrogen production, P (negative semiconductor) and B (positive semiconductor) ions (0.1, 0.2, 0.5, and 1.0 mol%) incorporated $TiO_2$ (P- and B-$TiO_2$) nanometer sized particles were prepared using a solvothermal method as a photocatalyst. The characteristics of the synthesized P- and B-$TiO_2$ photocatalysts were analyzed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), W-visible spectroscopy (UV-Vis), and Photoluminescence spectra (PL). The evolution of $H_2$ from methanol/water (1:1) photo-splitting over B-$TiO_2$ photocatalysts was enhanced compared to those over pure $TiO_2$ and P-$TiO_2$ photocatalysts; 0.42 mL of $H_2$ gas was evolved after 10 h when 0.5 g of a 1.0 mol% B-$TiO_2$ catalyst was used.

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils (탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과)

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.